SBASA69A August   2023  – December 2023 OPT4003-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Spectral Response
        1. 6.3.1.1 Channel 0: Human Eye Matching
        2. 6.3.1.2 Channel 1: Near Infrared
      2. 6.3.2 Automatic Full-Scale Range Setting
      3. 6.3.3 Error Correction Code (ECC) Features
        1. 6.3.3.1 Output Sample Counter
        2. 6.3.3.2 Output CRC
        3. 6.3.3.3 Threshold Detection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Modes of Operation
      2. 6.4.2 Interrupt Modes of Operation
      3. 6.4.3 Light Range Selection
      4. 6.4.4 Selecting Conversion Time
      5. 6.4.5 Light Measurement in Lux
      6. 6.4.6 Threshold Detection Calculations
      7. 6.4.7 Light Resolution
    5. 6.5 Programming
      1. 6.5.1 I2C Bus Overview
        1. 6.5.1.1 Serial Bus Address
        2. 6.5.1.2 Serial Interface
      2. 6.5.2 Writing and Reading
        1. 6.5.2.1 High-Speed I2C Mode
        2. 6.5.2.2 Burst Read Mode
        3. 6.5.2.3 General-Call Reset Command
        4. 6.5.2.4 SMBus Alert Response
  8. Register Maps
    1. 7.1 Register Descriptions
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Electrical Interface
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Optical Interface
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Optomechanical Design
        3. 8.2.1.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Soldering and Handling Recommendations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Threshold Detection Calculations

The THRESHOLD_H_RESULT and THRESHOLD_L_RESULT threshold result registers are 12 bits, whereas the THRESHOLD_H_EXPONENT and THRESHOLD_L_EXPONENT threshold exponent registers are four bits. The threshold is compared at linear ADC_CODES, as given by the following equations. Therefore, the threshold registers are padded with zeros internally to compare with the ADC_CODES.

Equation 6. ADC_CODES_TH = THRESHOLD_H_RESULT << (8 + THRESHOLD_H_EXPONENT)

or

Equation 7. ADC_CODES_TH = THRESHOLD_H_RESULT × 2^(8 + THRESHOLD_H_EXPONENT)

and

Equation 8. ADC_CODES_TL = THRESHOLD_L_RESULT << (8 + THRESHOLD_L_EXPONENT)

or

Equation 9. ADC_CODES_TL=THRESHOLD_L_RESULT × 2^(8 + THRESHOLD_L_EXPONENT)

Threshold are then compared as given in the following equations to detect fault events.

Equation 10. If ADC_CODES < ADC_CODES_TL a fault low is detected

and

Equation 11. If ADC_CODES > ADC_CODES_TH a fault high is detected

Based on the FAULT_COUNT register setting, with consecutive fault high or fault low events, the respective FLAG_H and FLAG_L registers are set. See the Interrupt Modes of Operation section for more information. Understanding the relation between the THRESHOLD_H_EXPONENT, THRESHOLD_H_RESULT, THRESHOLD_L_EXPONENT, and THRESHOLD_L_RESULT register bits and the output registers is important to set the appropriate threshold based on application needs.