SCAS981 March   2024 SN74AHCT164-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6.   6
  7. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 Noise Characteristics
    9. 5.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Balanced CMOS Push-Pull Outputs
      2. 7.3.2 Latching Logic
      3. 7.3.3 TTL-Compatible CMOS Inputs
      4. 7.3.4 Wettable Flanks
      5. 7.3.5 Clamp Diode Structure
    4. 7.4 Device Functional Modes
  10. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
    3. 8.3 Design Requirements
      1. 8.3.1 Power Considerations
      2. 8.3.2 Input Considerations
      3. 8.3.3 Output Considerations
    4. 8.4 Detailed Design Procedure
    5. 8.5 Application Curve
    6. 8.6 Power Supply Recommendations
    7. 8.7 Layout
      1. 8.7.1 Layout Guidelines
      2. 8.7.2 Layout Example
  11. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  12. 10Revision History
  13. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|14
  • BQA|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The SN74AHCT164-Q1 is an 8-bit shift register with 2 serial inputs (A and B) connected through an AND gate, as well as an asynchronous clear (CLR). The device requires a high signal on both A and B to set the input data line high; a low signal on either input will set the input data line low. Data at A and B can be changed while CLK is high or low, provided that the minimum set-up time requirements are met.

The CLK pin of the SN74AHCT164-Q1 is rising-edge triggered, activating on the transition from LOW to HIGH. Upon a positive-edge trigger, the device will store the result of the (A ● B) input data line in the first register and propagate each register’s data to the next register. The data of the last register, QH, will be discarded at each clock trigger. If a low signal is applied to the CLR pin, then the SN74AHCT164-Q1 will set all registers to a logical low value immediately.