SLLS177I March   1994  – March 2021 TL16C550C

PRODUCTION DATA  

  1. Features
  2. Description
  3. Revision History
  4. Pin Configuration and Functions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Recommended Operating Conditions (Low Voltage - 3.3 nominal)
    3. 5.3  Recommended Operating Conditions (Standard Voltage - 5 V nominal)
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics (Low Voltage - 3.3 V nominal)
    6. 5.6  Electrical Characteristics (Standard Voltage - 5 V nominal)
    7. 5.7  System Timing Requirements
    8. 5.8  System Switching Characteristics
    9. 5.9  Baud Generator Switching Characteristics
    10. 5.10 Receiver Switching Characteristics
    11. 5.11 Transmitter Switching Characteristics
    12. 5.12 Modem Control Switching Characteristics
  6. Parameter Measurement Information
  7. Detailed Description
    1. 7.1 Autoflow Control (see Figure 1-1)
    2. 7.2 Auto-RTS (see Figure 1-1)
    3. 7.3 Auto-CTS (see Figure 1-1)
    4. 7.4 Enabling Autoflow Control and Auto-CTS
    5. 7.5 Auto-CTS and Auto-RTS Functional Timing
    6. 7.6 Functional Block Diagram
    7. 7.7 Principles of Operation
      1. 7.7.1  Accessible Registers
      2. 7.7.2  FIFO Control Register (FCR)
      3. 7.7.3  FIFO Interrupt Mode Operation
      4. 7.7.4  FIFO Polled Mode Operation
      5. 7.7.5  Interrupt Enable Register (IER)
      6. 7.7.6  Interrupt Identification Register (IIR)
      7. 7.7.7  Line Control Register (LCR)
      8. 7.7.8  Line Status Register (LSR)
      9. 7.7.9  Modem Control Register (MCR)
      10. 7.7.10 Modem Status Register (MSR)
      11. 7.7.11 Programming Baud Generator
      12. 7.7.12 Receiver Buffet Register (RBR)
      13. 7.7.13 Scratch Register
      14. 7.7.14 Transmitter Holding Register (THR)
  8. Application Information
  9. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Line Status Register (LSR)

(1)The LSR provides information to the CPU concerning the status of data transfers. The contents of this register are summarized in Table 7-3 and described in the following bulleted list.

  • Bit 0: This bit is the data ready (DR) indicator for the receiver. DR is set whenever a complete incoming character has been received and transferred into the RBR or the FIFO. DR is cleared by reading all of the data in the RBR or the FIFO.
  • Bit 1(1):This bit is the overrun error (OE) indicator. When OE is set, it indicates that before the character in the RBR was read, it was overwritten by the next character transferred into the register. OE is cleared every time the CPU reads the contents of the LSR. If the FIFO mode data continues to fill the FIFO beyond the trigger level, an overrun error occurs only after the FIFO is full and the next character has been completely received in the shift register. An overrun error is indicated to the CPU as soon as it happens. The character in the shift register is overwritten, but it is not transferred to the FIFO.
  • Bit 2 (see Footnote 2): This bit is the parity error (PE) indicator. When PE is set, it indicates that the parity of the received data character does not match the parity selected in the LCR (bit 4). PE is cleared every time the CPU reads the contents of the LSR. In the FIFO mode, this error is associated with the particular character in the FIFO to which it applies. This error is revealed to the CPU when its associated character is at the top of the FIFO.
  • Bit 3 (see Footnote 2): This bit is the framing error (FE) indicator. When FE is set, it indicates that the received character didnot have a valid (set) stop bit. FE is cleared every time the CPU reads the contents of the LSR. In the FIFO mode, this error is associated with the particular character in the FIFO to which it applies. This error is revealed to the CPU when its associated character is at the top of the FIFO. The ACE tries to resynchronize after a framing error. To accomplish this, it is assumed that the framing error is due to the next start bit. The ACE samples this start bit twice and then accepts the input data.
  • Bit 4 (see Footnote 2): This bit is the break interrupt (BI) indicator. When BI is set, it indicates that the received data input was held low for longer than a full-word transmission time. A full-word transmission time is defined as the total time to transmit the start, data, parity, and stop bits. BI is cleared every time the CPU reads the contents of the LSR. In the FIFO mode, this error is associated with the particular character in the FIFO to which it applies. This error is revealed to the CPU when its associated character is at the top of the FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The next character transfer is enabled after SIN goes to the marking state for at least two RCLK samples and then receives the next valid start bit.
  • Bit 5: This bit is the THRE indicator. THRE is set when the THR is empty, indicating that the ACE is ready to accept a new character. If the THRE interrupt is enabled when THRE is set, an interrupt is generated. THRE is set when the contents of the THR are transferred to the TSR. THRE is cleared concurrent with the loading of the THR by the CPU. In the FIFO mode, THRE is set when the transmit FIFO is empty; it is cleared when at least one byte is written to the transmit FIFO.
  • Bit 6: This bit is the transmitter empty (TEMT) indicator. TEMT bit is set when the THR and the TSR are bothempty. When either the THR or the TSR contains a data character, TEMT is cleared. In the FIFO mode, TEMT is set when the transmitter FIFO and shift register are both empty.
  • Bit 7: In the TL16C550C mode, this bit is always cleared. In the TL16C450 mode, this bit is always cleared. In the FIFO mode, LSR7 is set when there is at least one parity, framing, or break error in the FIFO. It is cleared when the microprocessor reads the LSR and there are no subsequent errors in the FIFO.
The line status register is intended for read operations only; writing to this register is not recommended outside of a factory testing environment.
Bits 1 through 4 are the error conditions that produce a receiver line status interrupt.