SLYS050B April   2023  – February 2024 TMAG5131-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Magnetic Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Magnetic Flux Direction
      2. 7.3.2 Magnetic Response
      3. 7.3.3 Output Type
      4. 7.3.4 Sampling Rate
      5. 7.3.5 Hall Element Location
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Defining the Design Implementation
    2. 8.2 Typical Applications
      1. 8.2.1 Hinge
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Head-On
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Slide-By
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical and Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Defining the Design Implementation

The first step of the design is identifying the general design implementation. Define whether the magnet that needs to be detected is sliding past the sensor, moving head-on toward the sensor, or swinging toward the sensor on a hinge. Figure 8-1 shows examples for each of the aforementioned design implementations.

GUID-20221207-SS0I-NJKR-KKLV-X5FNWWHVKPDF-low.svg Figure 8-1 Design Implementations

With each implementation, the objective is to design the system such that the spatial coordinates of the transition region fall within the spatial coordinates associated with the BOP maximum and BRP minimum specifications. Figure 8-2 shows a head-on example that shows how the location corresponding to the device BOPMAX and BRPMIN fall within the desired transition region. To facilitate rapid design iteration, TI’s Magnetic Sense Simulator (TIMSS) webtool is leveraged in the following design examples.

GUID-6F857366-16FA-4A6B-AE12-E4969BD62AE9-low.png Figure 8-2 Head-On Example