SLVSCE9D June   2014  – October  2017 TPS25942A , TPS25942L , TPS25944A , TPS25944L

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Enable and Adjusting Undervoltage Lockout
      2. 9.3.2  Overvoltage Protection (OVP)
      3. 9.3.3  Hot Plug-In and In-Rush Current Control
      4. 9.3.4  Overload and Short Circuit Protection
        1. 9.3.4.1 Overload Protection
        2. 9.3.4.2 Short Circuit Protection
        3. 9.3.4.3 Start-Up With Short on Output
        4. 9.3.4.4 Constant Current Limit Behavior During Overcurrent Faults
      5. 9.3.5  Reverse Current Protection
      6. 9.3.6  FAULT Response
      7. 9.3.7  Current Monitoring
      8. 9.3.8  Power Good Comparator
      9. 9.3.9  IN, OUT and GND Pins
      10. 9.3.10 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Diode Mode
      2. 9.4.2 Shutdown Control
      3. 9.4.3 Operational Differences Between the TPS25942 and TPS25944
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Step by Step Design Procedure
        2. 10.2.2.2 Programming the Current-Limit Threshold: R(ILIM) Selection
        3. 10.2.2.3 Undervoltage Lockout and Overvoltage Set Point
        4. 10.2.2.4 Programming Current Monitoring Resistor—RIMON
        5. 10.2.2.5 Setting Output Voltage Ramp Time (tdVdT)
          1. 10.2.2.5.1 Case1: Start-Up Without Load: Only Output Capacitance C(OUT) Draws Current During Start-Up
          2. 10.2.2.5.2 Case 2: Start-Up With Load: Output Capacitance C(OUT) and Load Draws Current During Start-Up
        6. 10.2.2.6 Programing the Power Good Set Point
        7. 10.2.2.7 Support Component Selections—R6, R7 and CIN
      3. 10.2.3 Application Curves
    3. 10.3 System Examples
      1. 10.3.1 Active ORing (Auto-Power Multiplexer) Operation
        1. 10.3.1.1 N+1 Power Supply Operation
        2. 10.3.1.2 Priority Power MUX Operation
        3. 10.3.1.3 Priority MUXing With Almost Equal Rails (VIN1 ~ VIN2)
        4. 10.3.1.4 Reverse Polarity Protection
  11. 11Power Supply Recommendations
    1. 11.1 Transient Protection
    2. 11.2 Output Short-Circuit Measurements
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overload and Short Circuit Protection

The device monitors load current by sensing the voltage across the internal sense resistor. The FET current is monitored at both the start-up and during normal operation. During overload events, the device keeps the over current limited to the overcurrent limit (I(LIM)) programmed by R(ILIM) resistor as shown in Equation 4.

Equation 4. TPS25942A TPS25942L TPS25944A TPS25944L eq5_lvsce9.gif

where

  • I(LIM) is overload current limit in Ampere.
  • R(ILIM) is the current limit resistor in kΩ

The device incorporates two distinct levels: an overcurrent-limit (I(LIM)) and a fast-trip threshold (I(FASTRIP)). The illustration of fast trip and current limit operation is shown in Figure 52.

Since the bias current on ILIM pin directly controls the current-limiting behavior of the device, the PCB routing of this node must be kept away from any noisy (switching) signals.