SLUS525A March   2007  – September 2015 TPS61050 , TPS61052

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Efficiency
      2. 7.3.2 Soft-Start
      3. 7.3.3 Shutdown
      4. 7.3.4 LED Failure Modes
      5. 7.3.5 Undervoltage Lockout
      6. 7.3.6 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes: Torch and Flash
      2. 7.4.2 Mode of Operation: Flash Blanking (TPS61050)
      3. 7.4.3 Hardware Voltage Mode Selection (TPS61052)
      4. 7.4.4 Low Light Dimming Mode
    5. 7.5 Programming
      1. 7.5.1 3-Bit ADC
      2. 7.5.2 Serial Interface Description
      3. 7.5.3 F/S-Mode Protocol
      4. 7.5.4 TPS6105X I2C Update Sequence
    6. 7.6 Register Maps
      1. 7.6.1 Register Description
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application Schematic
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selecton
          2. 8.2.1.2.2 Capacitor Selection
            1. 8.2.1.2.2.1 Input Capacitor
            2. 8.2.1.2.2.2 Output Capacitor
          3. 8.2.1.2.3 Checking Loop Stability
        3. 8.2.1.3 Application Curves
      2. 8.2.2 High-Power White LED Solution Featuring Privacy Indicator
      3. 8.2.3 High-Power White LED Solution Featuring No-Latency Turn-Down Through PA TX Signal
      4. 8.2.4 High-Power White LED Flash Driver And AF/Zoom Motor Drive Supply
      5. 8.2.5 White LED Flash Driver and Audio Amplifier Power Supply Exclusive Operation
      6. 8.2.6 White LED Flash Driver and Audio Amplifier Power Supply Operating Simultaneously
      7. 8.2.7 White LED Flash Driver and Auxiliary Lighting Zone Power Supply
      8. 8.2.8 2 × 300 mA Dual LED Camera Flash
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Related Links
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Summary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage on AVIN, VOUT, SW, LED (2) –0.3 7 V
Voltage on SCL, SDA, FLASH_SYNC, GPIO, ENVM (2) –0.3 7 V
Input current on GPIO 25 mA
TA Operating ambient temperature (3) –40 85 °C
TJ (MAX) Maximum operating junction temperature 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package in the application (θJA), as given by the following equation: TA(max)= TJ(max)–(θJA × PD(max)).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN Input voltage range 2.5 3.6 6 V
VOUT Output voltage range in Current regulator mode VIN 5.5 V
Output voltage range in Voltage regulator mode 4.5 5.25
L Inductance effective value range 1.3 2.2 2.9 V
CIN Input capacitance range 10 µH
COUT Output capacitance effective value range 3 10 50 µF
TJ Operating junction temperature –40 125

6.4 Thermal Information

THERMAL METRIC(1) TPS6105x UNIT
DRC (VSON) YZG (DSBGA)
10 PINS 12 PINS
RθJA Junction-to-ambient thermal resistance 48.5 82 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 67.4 0.6 °C/W
RθJB Junction-to-board thermal resistance 23 35 °C/W
ψJT Junction-to-top characterization parameter 1.8 2.6 °C/W
ψJB Junction-to-board characterization parameter 23.1 19.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 5.3 N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise noted the specification applies for VIN = 3.6 V over an operating junction temp. of –40°C ≤ TJ ≤ 125°C. Typical values are for TA = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
VIN Input voltage 2.5 6 V
Minimum input voltage for start-up MODE_CTRL[1:0] = 11, OV[1:0] = 01, RL = 10 Ω 2.5 V
IQ Operating quiescent current into AVIN MODE_CTRL[1:0] = 01, ILED = 0 mA 8.5 mA
ISD Shutdown current into AVIN MODE_CTRL[1:0] = 00, OV[1:0] ≠ 11
–40°C ≤ TJ ≤ 85°C
0.3 3 μA
MODE_CTRL[1:0] = 00, OV[1:0] = 11
–40°C ≤ TJ ≤ 85°C
140 μA
VUVLO Undervoltage lockout threshold VIN falling 2.3 2.4 V
OUTPUT
VOUT Output voltage Current regulator mode VIN 5.5 V
Voltage regulator mode 4.5 5.25
OVP OVP Output overvoltage protection VOUT rising 5.7 6 6.25 V
Output overvoltage protection hysterisis 0.15 V
D Minimum duty cycle 7.5%
LED current accuracy(1) 0.25 V ≤ VLED ≤ 2 V,
50 mA ≤ ILED  ≤ 250 mA, TJ = 50°C
–15% 15%
0.25 V ≤ VLED  ≤ 2 V,
200 mA ≤ ILED  ≤ 1200 mA, TJ = 50°C
–12% 12%
LED current temperature coefficient 0.08 %/°C
DC output voltage accuracy 2.5 V ≤ VIN ≤ 0.9 VOUT, PWM operation –3% 3%
VLED LED sense voltage ILED = 1200 mA 250 mV
LED input leakage current VLED = VOUT = 5 V, –40°C ≤ TJ ≤ 85°C 0.1 1 μA
POWER SWITCH
rDS(on) Switch MOSFET on-resistance VOUT = VGS = 3.6 V 80
Rectifier MOSFET on-resistance 80
Ilkg(SW) Switch MOSFET leakage VDS = 6 V, –40°C ≤ TJ ≤ 85°C 0.1 1 μA
Rectifier MOSFET leakage 0.1 1
Ilim Switch current limit 2.5 V ≤ VIN  ≤ 6 V, ILIM bits = 00 850 1000 1150 mA
2.5 V ≤ VIN  ≤ 6 V, ILIM bits = 01, 10 (1) 1275 1500 1725
2.5 V ≤ VIN  ≤ 6 V, ILIM bits = 11 (1) 1700 2000 2300
Thermal shutdown(1) 140 160 °C
Thermal shutdown hysteresis(1) 20 °C
OSCILLATOR
fSW Oscillator frequency 1.8 2 2.2 MHz
ADC
Resolution 3 Bits
Total error(1) VLED = 0.25 V, assured monotonic by design ±0.25 ±1 LSB
SDA, SCL, GPIO, ENVM, FLASH_SYNC
V(IH) High-level input voltage 1.2 V
V(IL) Low-level input voltage 0.4 V
V(OL) Low-level output voltage (SDA) IOL = 8 mA 0.3 V
Low-level output voltage (GPIO) DIR = 1, IOL = 8 mA 0.3
I(LKG) Logic input leakage current Input connected to VIN or GND, –40°C ≤ TJ  ≤ 85°C 0.01 0.1 μA
GPIO pulldown resistance DIR = 0, GPIO ≤ 0.4 V (TPS61050) 400
ENVM pulldown resitance ENVM ≤ 0.4 V (TPS61052) 400
FLASH_SYNC pulldown resistance FLASH_SYNC ≤ 0.4 V 400
TIMING
Start-up time From shutdown into torch mode ILED = 75 mA 1.2 ms
From shutdown into voltage mode through ENVM
IOUT = 0 mA
650 μs
LED current settling time(2) triggered by
rising edge on FLASH_SYNC
MODE_CTRL[1:0] = 10,
ILED = from 0 mA to 900 mA
400 μs
LED current settling time(2) triggered by
TX mask
MODE_CTRL[1:0] = 10,
ILED = 900 mA to 150 mA
20 μs
(1) Assured by design. Not tested in production.
(2) Settling time to ±15% of the target value

6.6 I2C Interface Timing Characteristics(1)

MIN TYP MAX UNIT
fSCL SCL clock frequency Standard mode 100 kHz
Fast mode 400
tBUF Bus free time between a STOP and START condition Standard mode 4.7 μs
Fast mode 1.3
tHD; tSTA Hold time (repeated) START condition Standard mode 4 μs
Fast mode 600 ns
tLOW LOW period of the SCL clock Standard mode 4.7 μs
Fast mode 1.3
tHIGH HIGH period of the SCL clock Standard mode 4 μs
Fast mode 600 ns
tSU; tSTA Setup time for a repeated START condition Standard mode 4.7 μs
Fast mode 600 ns
tSU; tDAT Data setup time Standard mode 250 ns
Fast mode 100
tHD; tDAT Data hold time Standard mode 0 3.45 μs
Fast mode 0 0.9
tRCL Rise time of SCL signal Standard mode 20 + 0.1CB 1000 ns
Fast mode 20 + 0.1CB 300
tRCL1 Rise time of SCL signal after a repeated START condition and after an acknowledge bit Standard mode 20 + 0.1CB 1000 ns
Fast mode 20 + 0.1CB 1000
tFCL Fall time of SCL signal Standard mode 20 + 0.1CB 300 ns
Fast mode 20 + 0.1CB 300
tRDA Rise time of SDA signal Standard mode 20 + 0.1CB 1000 ns
Fast mode 20 + 0.1CB 300
tFDA Fall time of SDA signal Standard mode 20 + 0.1CB 300 ns
Fast mode 20 + 0.1CB 300
tSU; tSTO Setup time for STOP condition Standard mode 4 μs
Fast mode 600 ns
CB Capacitive load for SDA and SCL 400 pF
(1) Assured by design. Not tested in production.
TPS61050 TPS61052 serial_lus525.gif Figure 1. Serial Interface Timing For F/S-Mode

6.7 Typical Characteristics

Table 1. Table of Graphs

GRAPH TITLE FIGURE
LED Power Efficiency vs Input Voltage Figure 2, Figure 3
DC Input Current vs Input Voltage Figure 4
LED Current vs LED Pin Headroom Voltage Figure 5
LED Current vs LED Current Digital Code Figure 6, Figure 7, Figure 8
Voltage Mode Efficiency vs Output Current Figure 9
DC Output Voltage vs Load Current Figure 10
DC Output Voltage vs Input Voltage Figure 11
Quiescent Current vs Input Voltage Figure 12
Shutdown Current vs Input Voltage Figure 13
Junction Temperature vs GPIO Voltage Figure 14
TPS61050 TPS61052 pwr_eff_vi_lus525.gif
Figure 2. LED Power Efficiency vs Input Voltage
TPS61050 TPS61052 dc_ip_vi_lus525.gif
Figure 4. DC Input Current vs Input Voltage
TPS61050 TPS61052 pwr2_eff_vi_lus525.gif
Figure 3. LED Power Efficiency vs Input Voltage
TPS61050 TPS61052 led_cur_v_lus525.gif
Figure 5. LED Current vs LED Pin Headroom Voltage
TPS61050 TPS61052 led_cur_code_lus525.gif
Figure 6. LED Current vs LED Current Digital Code
TPS61050 TPS61052 led_cur_dig_lus525.gif
Figure 8. LED Current vs LED Current Digital Code
TPS61050 TPS61052 dcvo_io_lus525.gif
Figure 10. DC Output Voltage vs Output Current
TPS61050 TPS61052 ques_cur_vi_lus525.gif
Figure 12. Quiescent Current vs Input Voltage
TPS61050 TPS61052 tj_gpiov_lus525.gif
Figure 14. Junction Temperature vs GPIO Voltage
TPS61050 TPS61052 led2_cur_cod_lus525.gif
Figure 7. LED Current vs LED Current Digital Code
TPS61050 TPS61052 eff_io_lus525.gif
Figure 9. Voltage Mode Efficiency vs Load Current
TPS61050 TPS61052 dcvo2_io_lus525.gif
Figure 11. DC Output Voltage vs Input Voltage
TPS61050 TPS61052 shutdown_lus525.gif
Figure 13. Shutdown Current vs Input Voltage