SLLSEF7 March   2014 TUSB8020B-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Terminal Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 3.3-V I/O Electrical Characteristics
    6. 7.6 Power-Up Timing Requirements
    7. 7.7 Hub Input Supply Current
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Battery Charging Features
      2. 8.3.2 USB Power Management
      3. 8.3.3 One Time Programmable (OTP) Configuration
      4. 8.3.4 Clock Generation
        1. 8.3.4.1 Crystal Requirements
        2. 8.3.4.2 Input Clock Requirements
      5. 8.3.5 Power Up and Reset
    4. 8.4 Device Functional Modes
      1. 8.4.1 External Configuration Interface
      2. 8.4.2 I2C EEPROM Operation
      3. 8.4.3 SMBus Slave Operation
    5. 8.5 Register Maps
      1. 8.5.1 Configuration Registers
        1. 8.5.1.1  ROM Signature Register
        2. 8.5.1.2  Vendor ID LSB Register
        3. 8.5.1.3  Vendor ID MSB Register
        4. 8.5.1.4  Product ID LSB Register
        5. 8.5.1.5  Product ID MSB Register
        6. 8.5.1.6  Device Configuration Register
        7. 8.5.1.7  Battery Charging Support Register
        8. 8.5.1.8  Device Removable Configuration Register
        9. 8.5.1.9  Port Used Configuration Register
        10. 8.5.1.10 PHY Custom Configuration Register
        11. 8.5.1.11 Device Configuration Register 2
        12. 8.5.1.12 UUID Registers
        13. 8.5.1.13 Language ID LSB Register
        14. 8.5.1.14 Language ID MSB Register
        15. 8.5.1.15 Serial Number String Length Register
        16. 8.5.1.16 Manufacturer String Length Register
        17. 8.5.1.17 Product String Length Register
        18. 8.5.1.18 Serial Number Registers
        19. 8.5.1.19 Manufacturer String Registers
        20. 8.5.1.20 Product String Registers
        21. 8.5.1.21 Additional Feature Configuration Register
        22. 8.5.1.22 Charging Port Control Register
        23. 8.5.1.23 Device Status and Command Register
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Upstream Port Implementation
        2. 9.2.2.2 Downstream Port 1 Implementation
        3. 9.2.2.3 Downstream Port 2 Implementation
        4. 9.2.2.4 VBUS Power Switch Implementation
        5. 9.2.2.5 Clock, Reset, and Misc
        6. 9.2.2.6 Power Implementation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply
    2. 10.2 Downstream Port Power
    3. 10.3 Ground
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Placement
      2. 11.1.2 Package Specific
      3. 11.1.3 Differential Pairs
    2. 11.2 Layout Example
      1. 11.2.1 Upstream Port
      2. 11.2.2 Downstream Port
      3. 11.2.3 Thermal Pad
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Layout

11.1 Layout Guidelines

11.1.1 Placement

  1. 9.53K ±1% resistor connected to terminal USB_R1 should be placed as close as possible to the TUSB8020B-Q1.
  2. A 0.1-µF capacitor should be placed as close as possible on each VDD and VDD33 power pin.
  3. The 100-nF capacitors on the SSTXP and SSTXM nets should be placed close to the USB connector (Type A, Type B, and so forth).
  4. The ESD and EMI protection devices (if used) should also be placed as possible to the USB connector.
  5. If a crystal is used, it must be placed as close as possible to the TUSB8020B-Q1’s XI and XO terminals.
  6. Place voltage regulators as far away as possible from the TUSB8020B-Q1, the crystal, and the differential pairs.
  7. In general, the large bulk capacitors associated with each power rail should be placed as close as possible to the voltage regulators.

11.1.2 Package Specific

  1. The TUSB8020B-Q1 package as a 0.5-mm pin pitch.
  2. The TUSB8020B-Q1 package has a 3.6-mm x 3.6-mm thermal pad. This thermal pad must be connected to ground through a system of vias.
  3. All vias under device, except for those connected to thermal pad, should be solder masked to avoid any potential issues with thermal pad layouts.

11.1.3 Differential Pairs

This section describes the layout recommendations for all the TUSB8020B-Q1 differential pairs: USB_DP_XX, USB_DM_XX, USB_SSTXP_XX, USB_SSTXM_XX, USB_SSRXP_XX, and USB_SSRXM_XX.

  1. Must be designed with a differential impedance of 90 Ω ±10%.
  2. In order to minimize cross talk, it is recommended to keep high speed signals away from each other. Each pair should be separated by at least 5 times the signal trace width. Separating with ground as depicted in the layout example will also help minimize cross talk.
  3. Route all differential pairs on the same layer adjacent to a solid ground plane.
  4. Do not route differential pairs over any plane split.
  5. Adding test points will cause impedance discontinuity and will therefore negative impact signal performance. If test points are used, they should be placed in series and symmetrically. They must not be placed in a manner that causes stub on the differential pair.
  6. Avoid 90° turns in trace. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left and right bends should be as equal as possible and the angle of the bend should be ≥ 135°. This will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on EMI.
  7. Minimize the trace lengths of the differential pair traces. The maximum recommended trace length for SS differential pair signals and USB 2.0 differential pair signals is eight inches. Longer trace lengths require very careful routing to assure proper signal integrity.
  8. Match the etch lengths of the differential pair traces (i.e. DP and DM or SSRXP and SSRXM or SSTXP and SSTXM). There should be less than 5 mils difference between a SS differential pair signal and its complement. The USB 2.0 differential pairs should not exceed 50 mils relative trace length difference.
  9. The etch lengths of the differential pair groups do not need to match (i.e. the length of the SSRX pair to that of the SSTX pair), but all trace lengths should be minimized.
  10. Minimize the use of vias in the differential pair paths as much as possible. If this is not practical, make sure that the same via type and placement are used for both signals in a pair. Any vias used should be placed as close as possible to the TUSB8020B-Q1 device.
  11. To ease routing, the polarity of the SS differential pairs can be swapped. This means that SSTXP can be routed to SSTXM or SSRXM can be routed to SSRXP.
  12. Do not place power fuses across the differential pair traces.

11.2 Layout Example

11.2.1 Upstream Port

routing_upstream_port_sllsef7.gifFigure 14. Example Routing of Upstream Port

11.2.2 Downstream Port

routing_downstream_port_sllsef7.gifFigure 15. Example Routing of Downstream Port

11.2.3 Thermal Pad

thermal_pad_layout_sllsef7.gifFigure 16. Example Thermal Pad Layout