SLUSF12A april   2023  – august 2023 UCC14131-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Insulation Specifications
    6. 7.6 Electrical Characteristics
    7. 7.7 Safety Limiting Values
  9. Safety-Related Certifications
  10. Insulation Characteristics
  11. 10Typical Characteristics
  12. 11Detailed Description
    1. 11.1 Overview
    2. 11.2 Functional Block Diagram
    3. 11.3 Feature Description
      1. 11.3.1 Power Stage Operation
        1. 11.3.1.1 VDD-VEE Voltage Regulation
        2. 11.3.1.2 COM-VEE Voltage Regulation
        3. 11.3.1.3 Power Handling Capability
      2. 11.3.2 Output Voltage Soft Start
      3. 11.3.3 ENA and PG
      4. 11.3.4 Protection Functions
        1. 11.3.4.1 Input Undervoltage Lockout
        2. 11.3.4.2 Input Overvoltage Lockout
        3. 11.3.4.3 Output Undervoltage Protection
        4. 11.3.4.4 Output Overvoltage Protection
        5. 11.3.4.5 Overpower Protection
        6. 11.3.4.6 Overtemperature Protection
    4. 11.4 Device Functional Modes
  13. 12Application and Implementation
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
      2. 12.2.2 Detailed Design Procedure
        1. 12.2.2.1 Capacitor Selection
        2. 12.2.2.2 Single RLIM Resistor Selection
        3. 12.2.2.3 RDR Circuit Component Selection
        4. 12.2.2.4 Feedback Resistors Selection
    3. 12.3 System Examples
    4. 12.4 Power Supply Recommendations
    5. 12.5 Layout
      1. 12.5.1 Layout Guidelines
      2. 12.5.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  15. 14Mechanical, Packaging, and Orderable Information
  16. 15Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

The maximum recommended average power safe operating area (SOA) at each Vin is determined by the lower value of the 1.5 W limit (dotted line) and the corresponding thermal derating curve (solid line) at that input voltage. It is not recommended to operate at an ambient temperature higher than 125oC. The thermal derating power is acquired with an evaluation board similar to the EVM shown in the Application and Implementation section. Tshut represents the primary-side over-temperature shutdown rising threshold. As shown in the Electrical Characteristics table, the typical Tshut value is 160oC, and minimal Tshut value is 150oC. The SOA derating curve with both Tshut = 160oC and 150oC are provided below. The SOA curves under four common VDD-VEE settings, 10V, 12V, 15V, and 18V are characterized. In each SOA curve, the input voltage is swept from 10V to 18V. To represent a worst-case condition with Tshut = 150oC, the test is done in a shieded box to block circulating air in the thermal chamber.
GUID-20230824-SS0I-DSNC-M8D0-J9WW344NFBZ4-low.pngFigure 10-1 SOA Derating Curves: VVDD-VEE = 10 V, VCOM-VEE = 5 V, Tshut=160oC, No Load on VCOM-VEE.
GUID-20230824-SS0I-HPSW-ZTS5-T4K5GKJ0KCKR-low.pngFigure 10-3 SOA Derating Curves: VVDD-VEE = 15 V, VCOM-VEE = 5 V, Tshut=160oC, No Load on VCOM-VEE.
GUID-20230824-SS0I-FDJH-BBRH-WNBLTZWM1GKQ-low.pngFigure 10-5 SOA Derating Curves: VVDD-VEE = 15 V, VCOM-VEE = 5 V, Tshut=150oC, , No Load on VCOM-VEE, tested in a shielded box.
GUID-20230824-SS0I-XVVH-JGFM-5QSVCKJCJ7HT-low.pngFigure 10-2 SOA Derating Curves: VVDD-VEE = 12 V, VCOM-VEE = 5 V, Tshut=160oC, No Load on VCOM-VEE.
GUID-20230824-SS0I-3J1T-FGHN-SFRK7RXJCV5B-low.pngFigure 10-4 SOA Derating Curves: VVDD-VEE = 18 V, VCOM-VEE = 5 V, Tshut=160oC, No Load on VCOM-VEE.
GUID-20230824-SS0I-PZ2J-C6DX-ZCCVSQ3WPKCW-low.pngFigure 10-6 Load Transient Response: No Load to 1 W, VIN = 12 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-RFP7-2BDS-T3Z5JGN23DJ9-low.pngFigure 10-8 VVDD-VEE Load Regulation: VIN = 12 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-XJ1Z-ZR2J-V6S18LBGLBPR-low.pngFigure 10-10 VVDD-VEE Load Regulation: VIN = 18 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-RZJD-MTZK-2VSVSNBHJXQL-low.pngFigure 10-12 VCOM-VEE Load Regulation: VIN = 12 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-2MCJ-BTKQ-F6X0HWGHV6ZB-low.pngFigure 10-14 VCOM-VEE Load Regulation: VIN = 18 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-R7SR-JWZS-GVPWNC7XFZ70-low.pngFigure 10-16 Efficiency vs Load on VVDD-VEE: VIN = 12 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-0P8Z-LMKL-ZLSRTMDGGVD7-low.pngFigure 10-18 Efficiency vs Load on VVDD-VEE: VIN = 18 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-HCCV-LDJN-DLHN0BGVXLC3-low.pngFigure 10-20 Input Current vs Load on VVDD-VEE: VIN = 12 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-5JP5-S8V0-JLPK69T9VJXL-low.pngFigure 10-22 Input Current vs Load on VVDD-VEE: VIN = 18 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-ZVZB-TV2B-MSQP83NZTJZT-low.pngFigure 10-7 VVDD-VEE Load Regulation: VIN = 10 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-K693-NKLK-KJWSZJX8N16H-low.pngFigure 10-9 VVDD-VEE Load Regulation: VIN = 15 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-LFZT-PW58-JXNDWPFC8KPV-low.pngFigure 10-11 VCOM-VEE Load Regulation: VIN = 10 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-VXFQ-KWVX-WWQQNVCVNS4Z-low.pngFigure 10-13 VCOM-VEE Load Regulation: VIN = 15 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V
GUID-20230824-SS0I-3FHP-VZWF-VQDQRFVJ8JWG-low.pngFigure 10-15 Efficiency vs Load on VVDD-VEE: VIN = 10 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-J5Z6-7PBG-JCNKDF6H6BF5-low.pngFigure 10-17 Efficiency vs Load on VVDD-VEE: VIN = 15 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-B5CM-H65G-F4HFRBLW1MDP-low.pngFigure 10-19 Input Current vs Load on VVDD-VEE: VIN = 10 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE
GUID-20230824-SS0I-WXG3-BDZW-2QDKWXGMJL9P-low.pngFigure 10-21 Input Current vs Load on VVDD-VEE: VIN = 15 V, VVDD-VEE = 12 V, VCOM-VEE = 5 V, No Load on VCOM-VEE