SLUSF11C February   2023  – March 2024 UCC14341-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Insulation Specifications
    6. 6.6  Electrical Characteristics
    7. 6.7  Safety Limiting Values
    8. 6.8  Safety-Related Certifications
    9. 6.9  Insulation Characteristics
    10. 6.10 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Stage Operation
        1. 7.3.1.1 VDD-VEE Voltage Regulation
        2. 7.3.1.2 COM-VEE Voltage Regulation
        3. 7.3.1.3 Power Handling Capability
      2. 7.3.2 Output Voltage Soft Start
      3. 7.3.3 ENA and PG
      4. 7.3.4 Protection Functions
        1. 7.3.4.1 Input Undervoltage Lockout
        2. 7.3.4.2 Input Overvoltage Lockout
        3. 7.3.4.3 Output Undervoltage Protection
        4. 7.3.4.4 Output Overvoltage Protection
        5. 7.3.4.5 Overpower Protection
        6. 7.3.4.6 Over-Temperature Protection
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Capacitor Selection
        2. 8.2.2.2 Single RLIM Resistor Selection
        3. 8.2.2.3 RDR Circuit Component Selection
        4. 8.2.2.4 Feedback Resistors Selection
    3. 8.3 System Examples
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
  13. 12Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

The maximum recommended average power safe operating area (SOA) at each VIN is determined by the lower value of the 1.5W limit (dotted line) and the corresponding thermal derating curve (solid line) at that input voltage. Ambient temperatures higher than 125oC is not recommended. The thermal derating power is acquired with an evaluation board similar to the EVM shown in the Layout Example section. Tshut represents the primary-side over-temperature shutdown rising threshold. As shown in the Electrical Characteristics table, the typical Tshut value is 160oC, and minimal Tshut value is 150oC. The SOA derating curve with both Tshut = 160oC and 150oC are provided below. The SOA curves under four common VDD-VEE settings, 15V, 18V, 22V, and 25V are characterized. In each SOA curve, the input voltage is swept from 9V to 18V. To represent a worst-case condition with Tshut = 150oC, the test is done in a shieded box to block circulating air in the thermal chamber.
GUID-20240317-SS0I-8X2N-WCDN-9QC06LDDXD36-low.pngFigure 6-2 SOA Derating Curves: VVDD-VEE = 15V, VCOM-VEE = 5V, Tshut=160oC, No Load on VCOM-VEE
GUID-20240317-SS0I-6QDK-WPFV-Q6DGBWMB6V0F-low.pngFigure 6-4 SOA Derating Curves: VVDD-VEE = 22V, VCOM-VEE = 4V, Tshut=160oC, No Load on VCOM-VEE
GUID-99B32AF3-5CDF-4DFB-A46D-FC2FEA446BA8-low.svgFigure 6-6 SOA Derating Curves: VVDD-VEE = 22V, VCOM-VEE = 4V, Tshut=150oC, No Load on VCOM-VEE, tested in a shielded box.
GUID-20230214-SS0I-VZKK-8C8G-JT96BHQPW40J-low.pngFigure 6-8 Shutdown: VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V, IVDD-VEE = 68mA, No Load on VCOM-VEE. Time Scale: 2ms/div.
GUID-E9674145-430A-44B6-A58B-88A5C6B69F22-low.pngFigure 6-10 VVDD-VEE Load Regulation: VIN = 13.5V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-AB04875C-0F77-4FAE-B5B0-ECA837A9C5AA-low.pngFigure 6-12 VVDD-VEE Load Regulation: VIN = 16.5V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-EDE79AEA-F316-460D-93E3-BC47F2BC22AB-low.svgFigure 6-14 VCOM-VEE Load Regulation: VIN = 13.5V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-6C45AB0B-973A-468A-AB8A-11B1F222B3A5-low.svgFigure 6-16 VCOM-VEE Load Regulation: VIN = 16.5V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-3DCD8505-C78B-4B25-9905-CA56C05BEDC6-low.svgFigure 6-18 Efficiency vs. Load on VVDD-VEE: VIN = 13.5V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-A4AF27FB-6684-4CC6-AB03-23AE9CE4558E-low.svgFigure 6-20 Efficiency vs. Load on VVDD-VEE: VIN = 16.5V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-9893EE49-1A1B-4DCC-957D-71DE583A31EF-low.svgFigure 6-22 Input Current vs. Load on VVDD-VEE: VIN = 13.5V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-A33A1C4F-D860-4909-BF24-7FDC390BD1A5-low.svgFigure 6-24 Input Current vs. Load on VVDD-VEE: VIN = 16.5V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-20240317-SS0I-MQBK-0GN9-TRGRSHSWNNQ0-low.pngFigure 6-26 UCC14341B-Q1 SOA Derating Curves: VVDD-VEE = 15V, VCOM-VEE = 5V, Tshut=160oC, No Load on VCOM-VEE
GUID-20240317-SS0I-RJVX-ZL5M-9WGQJXW0FN5G-low.pngFigure 6-28 UCC14341B-Q1 VVDD-VEE Load Regulation: TAMBIENT = 25oC, VVDD-VEE = 15V, VCOM-VEE = 4V
GUID-20240317-SS0I-MT63-NWN8-XB9SKQ9QLW7G-low.pngFigure 6-30 UCC14341B-Q1 Efficiency vs. Load on VVDD-VEE: TAMBIENT = -40oC, VVDD-VEE = 15V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-20240317-SS0I-620P-NWRN-CSWGP80LK4B3-low.pngFigure 6-32 UCC14341B-Q1 Efficiency vs. Load on VVDD-VEE: TAMBIENT = 85oC, VVDD-VEE = 15V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-20240317-SS0I-DQTG-R4WQ-LWJLWKDZWQTX-low.pngFigure 6-3 SOA Derating Curves: VVDD-VEE = 18V, VCOM-VEE = 3V, Tshut=160oC, No Load on VCOM-VEE
GUID-20240317-SS0I-T329-RJXP-JWSSZ0SPJHX3-low.pngFigure 6-5 SOA Derating Curves: VVDD-VEE = 25V, VCOM-VEE = 5V, Tshut=160oC, No Load on VCOM-VEE
GUID-20230214-SS0I-CQ5P-D3LZ-M5J0J6D2JCFX-low.pngFigure 6-7 Start-up: VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V, IVDD-VEE = 68mA, No Load on VCOM-VEE. Time Scale: 1ms/div.
GUID-31D0FA24-A0D6-4B74-A3F1-6F8C3D082CAC-low.svgFigure 6-9 Load Transient Response: Between No Load and 1.5W, VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-D9376626-D7B6-40FA-A387-B5D9D0CEC9AE-low.pngFigure 6-11 VVDD-VEE Load Regulation: VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-20240317-SS0I-F13K-56VR-MPRT7DXZFXFB-low.pngFigure 6-13 VVDD-VEE Load Regulation: VIN = 18V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-15D7BF1C-6DAD-461C-AF68-0E015C081798-low.svgFigure 6-15 VCOM-VEE Load Regulation: VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-20240317-SS0I-VZJX-BX6N-7V9BTKHR1RNJ-low.pngFigure 6-17 VCOM-VEE Load Regulation: VIN = 18V, VVDD-VEE = 22V, VCOM-VEE = 4V
GUID-4F8C71F5-B355-452E-84EC-582D3BE59AC7-low.svgFigure 6-19 Efficiency vs. Load on VVDD-VEE: VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-20240317-SS0I-KT7P-TNC5-L4F4TZQB2NB6-low.pngFigure 6-21 Efficiency vs. Load on VVDD-VEE: VIN = 18V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-4D4E6AC0-C1EF-4A8C-B1B1-F02971B0FCA2-low.svgFigure 6-23 Input Current vs. Load on VVDD-VEE: VIN = 15V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-20240317-SS0I-28PX-SBDM-W38HTPDJDM2K-low.pngFigure 6-25 Input Current vs. Load on VVDD-VEE: VIN = 18V, VVDD-VEE = 22V, VCOM-VEE = 4V, No Load on VCOM-VEE
GUID-20240317-SS0I-ZJWQ-91ST-FXSKCPDHMJ0F-low.pngFigure 6-27 UCC14341B-Q1 VVDD-VEE Load Regulation: TAMBIENT = -40oC, VVDD-VEE = 15V, VCOM-VEE = 4V
GUID-20240317-SS0I-ZSDH-M5RL-6MWP9BTKNJQX-low.pngFigure 6-29 UCC14341B-Q1 VVDD-VEE Load Regulation: TAMBIENT = 85oC, VVDD-VEE = 15V, VCOM-VEE = 4V
GUID-20240317-SS0I-K1XS-TZGJ-QKW8W51SNL18-low.pngFigure 6-31 UCC14341B-Q1 Efficiency vs. Load on VVDD-VEE: TAMBIENT = 25oC, VVDD-VEE = 15V, VCOM-VEE = 4V, No Load on VCOM-VEE