JAJSNY9B September   2022  – February 2023 TPSM365R3 , TPSM365R6

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics
    6. 8.6  System Characteristics
    7. 8.7  Typical Characteristics
    8. 8.8  Typical Characteristics: VIN = 12 V
    9. 8.9  Typical Characteristics: VIN = 24 V
    10. 8.10 Typical Characteristics: VIN = 48 V
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Input Voltage Range
      2. 9.3.2  Output Voltage Selection
      3. 9.3.3  Input Capacitors
      4. 9.3.4  Output Capacitors
      5. 9.3.5  Enable, Start-Up, and Shutdown
      6. 9.3.6  External CLK SYNC (with MODE/SYNC)
        1. 9.3.6.1 Pulse-Dependent MODE/SYNC Pin Control
      7. 9.3.7  Switching Frequency (RT)
      8. 9.3.8  Power-Good Output Operation
      9. 9.3.9  Internal LDO, VCC UVLO, and BIAS Input
      10. 9.3.10 Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      11. 9.3.11 Spread Spectrum
      12. 9.3.12 Soft Start and Recovery from Dropout
        1. 9.3.12.1 Recovery from Dropout
      13. 9.3.13 Overcurrent Protection (OCP)
      14. 9.3.14 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Shutdown Mode
      2. 9.4.2 Standby Mode
      3. 9.4.3 Active Mode
        1. 9.4.3.1 CCM Mode
        2. 9.4.3.2 AUTO Mode - Light Load Operation
          1. 9.4.3.2.1 Diode Emulation
          2. 9.4.3.2.2 Frequency Reduction
        3. 9.4.3.3 FPWM Mode - Light Load Operation
        4. 9.4.3.4 Minimum On-time (High Input Voltage) Operation
      4. 9.4.4 Dropout
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 600-mA and 300-mA Synchronous Buck Regulator for Industrial Applications
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2  Output Voltage Setpoint
          3. 10.2.1.2.3  Switching Frequency Selection
          4. 10.2.1.2.4  Input Capacitor Selection
          5. 10.2.1.2.5  Output Capacitor Selection
          6. 10.2.1.2.6  VCC
          7. 10.2.1.2.7  CFF Selection
          8. 10.2.1.2.8  Power-Good Signal
          9. 10.2.1.2.9  Maximum Ambient Temperature
          10. 10.2.1.2.10 Other Connections
        3. 10.2.1.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
        1. 10.4.1.1 Ground and Thermal Considerations
      2. 10.4.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
      3. 11.1.3 Development Support
        1. 11.1.3.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 サポート・リソース
    5. 11.5 Trademarks
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 用語集
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout Guidelines

The PCB layout of any DC/DC module is critical to the optimal performance of the design. Poor PCB layout can disrupt the operation of an otherwise good schematic design. Even if the module regulates correctly, bad PCB layout can mean the difference between a robust design and one that cannot be mass produced. Furthermore, to a great extent, the EMI performance of the regulator is dependent on the PCB layout. In a buck converter module, the most critical PCB feature is the loop formed by the input capacitor or capacitors and power ground, as shown in Figure 10-14. This loop carries large transient currents that can cause large transient voltages when reacting with the trace inductance. These unwanted transient voltages disrupt the proper operation of the power module. Because of this, the traces in this loop must be wide and short, and the loop area as small as possible to reduce the parasitic inductance. Figure 10-15 shows a recommended layout for the critical components of the TPSM365Rx.

  1. Place the input capacitors as close as possible to the VIN and GND terminals. VIN and GND pins are adjacent, simplifying the input capacitor placement.
  2. Place bypass capacitor for VCC close to the VCC pin. This capacitor must be placed close to the device and routed with short, wide traces to the VCC and GND pins.
  3. Place the feedback divider as close as possible to the FB pin of the device. Place RFBB, RFBT, and CFF, if used, physically close to the device. The connections to FB and GND must be short and close to those pins on the device. The connection to VOUT can be somewhat longer. However, the latter trace must not be routed near any noise source (such as the SW node) that can capacitively couple into the feedback path of the regulator.
  4. Use at least one ground plane in one of the middle layers. This plane acts as a noise shield and as a heat dissipation path.
  5. Provide wide paths for VIN, VOUT, and GND. Making these paths as wide and direct as possible reduces any voltage drops on the input or output paths of the power module and maximizes efficiency.
  6. Provide enough PCB area for proper heat-sinking. Sufficient amount of copper area must be used to ensure a low RθJA, commensurate with the maximum load current and ambient temperature. The top and bottom PCB layers must be made with two ounce copper and no less than one ounce. If the PCB design uses multiple copper layers (recommended), these thermal vias can also be connected to the inner layer heat-spreading ground planes.
  7. Use multiple vias to connect the power planes to internal layers.

See the following PCB layout resources for additional important guidelines:

GUID-20220919-SS0I-FN8H-3DCV-JCKXVTRH1HFH-low.svg Figure 10-14 Current Loops with Fast Edges