SLAA202B February   2005  – December 2018 MSP430F149 , MSP430F149 , MSP430F2252-Q1 , MSP430F2252-Q1 , MSP430F2272-Q1 , MSP430F2272-Q1 , MSP430F2274 , MSP430F2274 , MSP430FG4619 , MSP430FG4619

 

  1.   Implementing IrDA With MSP430™ MCUs
    1.     Trademarks
    2. 1 Introduction
    3. 2 Hardware Description
      1. 2.1 Hardware Overview
      2. 2.2 Circuit Description
    4. 3 Software Description
      1. 3.1 Implementing IrPHY Layer Using Timer_A
        1. 3.1.1 Transmission
        2. 3.1.2 Reception
      2. 3.2 Implementing IrPHY Layer using USCI_A0
      3. 3.3 Implementing IrLAP
        1. 3.3.1 Discovery Services
        2. 3.3.2 Connect Services
        3. 3.3.3 Data Services
        4. 3.3.4 Disconnect Services
      4. 3.4 Implementing IrLMP
        1. 3.4.1 Discovery Services
        2. 3.4.2 Link Connect and Connect Services
        3. 3.4.3 Data Services
        4. 3.4.4 Disconnect Services
      5. 3.5 IAS Implementation
      6. 3.6 TTP Implementation
      7. 3.7 IrCOMM Implementation
      8. 3.8 Application Layer
    5. 4 PC Demonstration Application
    6. 5 IrDA Protocol Basics
      1. 5.1 Physical (IrPHY) Layer
      2. 5.2 Link Access Protocol (IrLAP) Layer
      3. 5.3 Link Management Protocol (IrLMP) Layer
      4. 5.4 Information Access Services (IAS)
      5. 5.5 Tiny Transfer Protocol (TTP)
      6. 5.6 IrCOMM
    7. 6 IrDA Communication Diagram
    8. 7 Frame Exchange Log
    9. 8 References
  2.   Revision History

Hardware Overview

The hardware design for this application focuses on the interfacing of the MSP430F149, the MSP430FG4619, and the MSP430F2274 with the Sharp® GP2W0110YPSF IrDA transceiver device. Other MSP430 MCUs can also be used, depending on the requirements of the end application.

The Sharp GP2W0110YPSF was selected because it follows all ISO specifications for IrDA V1.0. The fact that this part can be used at a 3.0-V level is a benefit when interfacing with the MSP430 MCU, because no external circuitry is necessary to adapt the voltage levels. It also needs only three signals for interfacing with the microcontroller: transmit, receive, and shutdown. This leaves most of the MCU pins free for other purposes.

The DIr169 evaluation board is compatible with the MSP430F149-based software presented in this application report.