SLAAEB4 april   2023 MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G3105 , MSPM0G3106 , MSPM0G3107 , MSPM0G3505 , MSPM0G3506 , MSPM0G3507 , MSPM0L1105 , MSPM0L1106 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1 , MSPM0L1343 , MSPM0L1344 , MSPM0L1345 , MSPM0L1346

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Difference Between EEPROM and On-Chip Flash
  4. 2Implementation
    1. 2.1 Principle
    2. 2.2 Header
  5. 3Software Description
    1. 3.1 Software Functionality and Flow
    2. 3.2 EEPROM Functions
      1. 3.2.1 Global Variables
      2. 3.2.2 EEPROM_TypeB_readDataItem
      3. 3.2.3 EEPROM_TypeB_findDataItem
      4. 3.2.4 EEPROM_TypeB_write
      5. 3.2.5 EEPROM_TypeB_transferDataItem
      6. 3.2.6 EEPROM_TypeB_eraseGroup
      7. 3.2.7 EEPROM_TypeB_init
    3. 3.3 Application Integration
    4. 3.4 EEPROM Emulation Memory Footprint
    5. 3.5 EEPROM Emulation Timing
  6. 4Application Aspects
    1. 4.1 Selection of Configurable Parameters
      1. 4.1.1 Number of Data Items
      2. 4.1.2 Cycling Capability
    2. 4.2 Recovery in Case of Power Loss
  7. 5References

Recovery in Case of Power Loss

Data corruption is possible in case of a power loss during EEPROM_TypeB_write or EEPROM_TypeB_eraseGroup.

To detect the corruption and recover from it, EEPROM_TypeB_init is implemented. It should be called immediately after power-up. EEPROM_TypeB_init checks all groups’ header to confirm whether data storage of EEPROM emulation is correct.

In the structure of EEPROM emulation, headers show the status of corresponding groups. There are four states in total. The changes between the four states are described in detail in the previous section.