SWRA679 January   2021 CC3200 , CC3220R , CC3220S , CC3220SF , CC3230S , CC3230SF , CC3235S , CC3235SF

 

  1.   Trademarks
  2. 1Introduction
    1. 1.1 Basics of the SAR ADC Architecture
    2. 1.2 Introduction to the CC32XX ADC
      1. 1.2.1 Main Features
      2. 1.2.2 ADC Sampling Operation
      3. 1.2.3 ADC Additional Information
  3. 2ADC Application Examples
    1. 2.1 Battery Voltage Measurements
      1. 2.1.1 Important Considerations
        1. 2.1.1.1 Extra Current Draw
        2. 2.1.1.2 Droop Correction
        3. 2.1.1.3 Offset Adjustment
        4. 2.1.1.4 Least Squares Fit
        5. 2.1.1.5 Choosing the Capacitor (for droop correction)
        6. 2.1.1.6 First Measurement
        7. 2.1.1.7 Time Between Measurements
  4. 3AC Measurements
  5. 4Useful References
    1. 4.1 Smart Thermostat
    2. 4.2 Measuring Air Quality With the Winsen MP503 Analog Sensor
    3. 4.3 Touch Position Detection With HMI Through Resistive Touchscreen
  6. 5References

AC Measurements

As noted in the case of battery monitoring, the use of external resistor divider and capacitor severely restricts the bandwidth of measurement. This method is not suitable for AC signals that can have the bandwidth all the way to the Nyquist limit of Fs/2 or 31 KHz in this ADC. In order to drive the input, a suitable ADC buffer needs to be used. There are several application notes available on the internet in choosing the right OPAMP depending upon the bandwidth, accuracy, offset, linearity and drift requirements. It is recommended for the user to select the OPAMP driver based on their requirement by referring to the application notes below.

Input Drive Circuitry for SAR ADCs

Optimize Your SAR ADC Design