TIDA029A july   2019  – june 2023 CC2640R2F-Q1 , CC2642R , CC2642R-Q1

 

  1.   1
  2.   Bluetooth Angle of Arrival (AoA) Antenna Design
  3.   Trademarks
  4. 1Introduction
  5. 2Angle of Arrival Antenna Design Considerations
    1. 2.1 Antenna Spacing
    2. 2.2 RF Switch Considerations
  6. 3Dipole Antenna Array
    1. 3.1 Dipole Antenna Strengths and Weaknesses
    2. 3.2 Angle Measurement Plane
    3. 3.3 PCB Implementation
    4. 3.4 Two Dipole Array Test Results
      1. 3.4.1 Total Radiated Power (TRP)
      2. 3.4.2 Measuring Antenna 1 and 2 Phase Difference
        1. 3.4.2.1 Bare PCB
        2. 3.4.2.2 PCB + RF Absorbing Material
        3. 3.4.2.3 PCB + RF Absorbing Material + Tin-Plated Copper Foil
        4. 3.4.2.4 PCB + RF Absorbing Material + Tin-Plated Copper Foil + Metal
      3. 3.4.3 Phase Difference vs Distance
  7. 4Calculating AoA From IQ Measurements
    1. 4.1 Dipole Antenna Array Uncompensated Angle of Arrival Results
      1. 4.1.1 Bare PCB Uncompensated AoA
      2. 4.1.2 PCB + RF Absorbing Material Uncompensated AoA
      3. 4.1.3 PCB + RF Absorbing Material + Tin-Plated Copper Foil Uncompensated AoA
      4. 4.1.4 PCB + RF Absorbing Material + Tin-Plated Copper Foil + Metal Uncompensated AoA
    2. 4.2 Dipole Antenna Array Compensated AoA Results
      1. 4.2.1 Bare PCB AoA With Compensation
      2. 4.2.2 PCB + RF Absorbing Material + Tin-Plated Copper Foil Compensated AoA
      3. 4.2.3 PCB + RF Absorbing Material + Tin-Plated Copper Foil + Metal Compensated AoA
      4. 4.2.4 Hardware Setup Compensated Results Comparison
  8. 5References
  9. 6Revision History

PCB + RF Absorbing Material + Tin-Plated Copper Foil Compensated AoA

This hardware setup’s initial tests showed fairly linear results. Therefore, with compensation, AoA values are fairly accurate (depending on the frequency) from ±80°. Table 4-2 shows the compensation values used for each frequency.

Table 4-2 PCB + RF Absorbing Material + Tin-Plated Copper Foil AoA Compensation Values
Frequency (MHz)ChannelGainOffset
2402372.17–3.27
240402.17–3.34
240612.17–3.48
240822.17–3.54
241032.22–3.82
241242.22–3.54
241452.22–4.1
241662.22–4.1
241872.22–4.02
242082.22–4.16
242292.17–4.37
2424102.17–4.44
2426382.17–4.5
2428112.17–4.22
2430122.17–5.06
2432132.17–4.56
2434142.17–4.98
2436152.17–4.2
2438162.17–4.27
2440172.13–4.62
2442182.13–4.61
2444192.17–4.12
2446202.17–4.4
2448212.17–4.39
2450222.17–4.04
2452232.17–4.46
2454242.17–4.17
2456252.17–4.03
2458262.17–3.96
2460272.17–3.75
2462282.17–3.74
2464292.17–3.88
2466302.13–3.6
2468312.13–3.73
2470322.13–3.52
2472332.13–3.52
2474342.13–3.52
2476352.08–3.38
2478362.04–3.24
2480392.04–3.03

Figure 4-18 shows the uncompensated AoA error vs Phi and Figure 4-19 shows the compensated AoA error vs Phi.

GUID-C39C9BBE-6AEB-42A1-BD4A-A13742846B4C-low.pngFigure 4-18 PCB + RF Absorbing Material + Tin-Plated Copper Foil Uncompensated AoA Error
GUID-15C19EB0-196E-45D9-A543-2030687AECD4-low.pngFigure 4-19 PCB + RF Absorbing Material + Tin-Plated Copper Foil Compensated AoA Error

Compensation greatly reduces the AoA error and shows less than 10° of error over most frequencies from –80° to 75°. Figure 4-20 and Figure 4-21 show how the AoA data has been adjusted to be closer to the desired result.

GUID-87FE66D2-4796-4719-A657-FB829FEB6AD4-low.pngFigure 4-20 PCB + RF Absorbing Material + Tin-Plated Copper Foil Uncompensated AoA Results Over all Bluetooth Low Energy Channels
GUID-7741F0B0-20D4-4C8A-A376-666C74A98357-low.pngFigure 4-21 PCB + RF Absorbing Material + Tin-Plated Copper Foil Compensated AoA Results Over all Bluetooth Low Energy Channels