TIDUF44 January   2024

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Highlighted Products
      1. 2.2.1 BQ76907
      2. 2.2.2 BQ76905
      3. 2.2.3 BQ77207
      4. 2.2.4 MSPM0L1106
      5. 2.2.5 TCAN1042
      6. 2.2.6 TPSM365R6V5
      7. 2.2.7 TLV704
      8. 2.2.8 TMP61
  9. 3System Design Theory
    1. 3.1 Primary Protection Design
    2. 3.2 Secondary Protection
    3. 3.3 Other Circuit Design
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Software Requirements
    3. 4.3 Test Setup
    4. 4.4 Test Results
      1. 4.4.1 Cell Voltage Accuracy
      2. 4.4.2 Pack Current Accuracy
      3. 4.4.3 Protection
      4. 4.4.4 Cell Balancing
      5. 4.4.5 Working Modes Transition
      6. 4.4.6 Thermal Performance
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Description

This reference design is a high cell voltage accuracy 5s–7s Lithium-ion (Li-ion), Lithium Iron phosphate (LiFePO4) battery pack design. The design monitors each cell voltage, pack current, cell and metal-oxide semiconductor field-effect transistor (MOSFET) temperature with high accuracy and protects the Li-ion, LiFePO4 battery pack against cell overvoltage, cell undervoltage, overtemperature, charge and discharge overcurrent and discharge short-circuit situations. The product adopts low-side N-channel MOSFET architecture and has strong driving on and off capability. These features make this reference design highly applicable for power tools and vacuum cleaner battery pack applications.