製品詳細

Function Memory interface Output frequency (max) (MHz) 410 Number of outputs 56 Output supply voltage (V) 1.8 Core supply voltage (V) 1.8 Features DDR2 register Operating temperature range (°C) -40 to 85 Rating Catalog Output type SSTL-18 Input type SSTL-18
Function Memory interface Output frequency (max) (MHz) 410 Number of outputs 56 Output supply voltage (V) 1.8 Core supply voltage (V) 1.8 Features DDR2 register Operating temperature range (°C) -40 to 85 Rating Catalog Output type SSTL-18 Input type SSTL-18
NFBGA (ZRH) 176 90 mm² 15 x 6
  • Member of the Texas Instruments Widebus+™ Family
  • Pinout Optimizes DDR2 DIMM PCB Layout
  • 1-to-2 Outputs Supports Stacked DDR2 DIMMs
  • One Device Per DIMM Required
  • Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
  • Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
  • Supports SSTL_18 Data Inputs
  • Differential Clock (CLK and CLK) Inputs
  • Supports LVCMOS Switching Levels on the Chip-Select Gate-Enable, Control, and RESET Inputs
  • Checks Parity on DIMM-Independent Data Inputs
  • Supports Industrial Temperature Range (-40°C to 85°C)
  • RESET Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low, Except QERR
  • APPLICATIONS
    • DDR2 registered DIMM

Widebus+ is a trademark of Texas Instruments.

  • Member of the Texas Instruments Widebus+™ Family
  • Pinout Optimizes DDR2 DIMM PCB Layout
  • 1-to-2 Outputs Supports Stacked DDR2 DIMMs
  • One Device Per DIMM Required
  • Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
  • Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
  • Supports SSTL_18 Data Inputs
  • Differential Clock (CLK and CLK) Inputs
  • Supports LVCMOS Switching Levels on the Chip-Select Gate-Enable, Control, and RESET Inputs
  • Checks Parity on DIMM-Independent Data Inputs
  • Supports Industrial Temperature Range (-40°C to 85°C)
  • RESET Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low, Except QERR
  • APPLICATIONS
    • DDR2 registered DIMM

Widebus+ is a trademark of Texas Instruments.

This 28-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. One device per DIMM is required to drive up to 18 SDRAM loads or two devices per DIMM are required to drive up to 36 SDRAM loads.

All inputs are SSTL_18, except the chip-select gate-enable (CSGEN), control (C), and reset (RESET) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads, and meet SSTL_18 specifications, except the open-drain error (QERR) output.

The 74SSTUB32868 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The 74SSTUB32868 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs (D1-D5, D7, D9-D12, D17-D28 when C = 0; or D1-D12, D17-D20, D22, D24-D28 when C = 1) and indicates whether a parity error has occurred on the open-drain QERR pin (active low). The convention is even parity, i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit. To calculate parity, all DIMM-independent D-inputs must be tied to a known logic state.

The 74SSTUB32868 includes a parity checking function. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the device. Two clock cycles after the data are registered, the corresponding QERR signal is generated.

If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive parity errors occur, the QERR output is driven low and latched low for a clock duration equal to the parity error duration or until RESET is driven low. If a parity error occurs on the clock cycle before the device enters the low-power mode (LPM) and the QERR output is driven low, it stays latched low for the LPM duration plus two clock cycles or until RESET is driven low. The DIMM-dependent signals (DCKE0, DCKE1, DODT0, DODT1, DCS0 and DCS1) are not included in the parity check computation.

The C input controls the pinout configuration from register-A configuration (when low) to register-B configuration (when high). The C input should not be switched during normal operation. It should be hard-wired to a valid low or high level to configure the register in the desired mode.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is cleared and the data outputs is driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register becomes active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the 74SSTUB32868 must ensure that the outputs remain low, thus ensuring no glitches on the output.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low except QERR. The LVCMOS RESET and C inputs always must be held at a valid logic high or low level.

The device also supports low-power active operation by monitoring both system chip select (DCS0 and DCS1) and CSGEN inputs and will gate the Qn outputs from changing states when CSGEN, DCS0, and DCS1 inputs are high. If CSGEN, DCS0 or DCS1 input is low, the Qn outputs function normally. Also, if both DCS0 and DCS1 inputs are high, the device will gate the QERR output from changing states. If either DCS0 or DCS1 is low, the QERR output functions normally. The RESET input has priority over the DCS0 and DCS1 control and when driven low forces the Qn outputs low, and the QERR output high. If the chip-select control functionality is not desired, then the CSGEN input can be hard-wired to ground, in which case, the setup-time requirement for DCS0 and DCS1 would be the same as for the other D data inputs. To control the low-power mode with DCS0 and DCS1 only, then the CSGEN input should be pulled up to VCC through a pullup resistor.

The two VREF pins (A5 and AB5) are connected together internally by approximately 150 . However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

This 28-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. One device per DIMM is required to drive up to 18 SDRAM loads or two devices per DIMM are required to drive up to 36 SDRAM loads.

All inputs are SSTL_18, except the chip-select gate-enable (CSGEN), control (C), and reset (RESET) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads, and meet SSTL_18 specifications, except the open-drain error (QERR) output.

The 74SSTUB32868 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The 74SSTUB32868 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs (D1-D5, D7, D9-D12, D17-D28 when C = 0; or D1-D12, D17-D20, D22, D24-D28 when C = 1) and indicates whether a parity error has occurred on the open-drain QERR pin (active low). The convention is even parity, i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs combined with the parity input bit. To calculate parity, all DIMM-independent D-inputs must be tied to a known logic state.

The 74SSTUB32868 includes a parity checking function. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of the device. Two clock cycles after the data are registered, the corresponding QERR signal is generated.

If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive parity errors occur, the QERR output is driven low and latched low for a clock duration equal to the parity error duration or until RESET is driven low. If a parity error occurs on the clock cycle before the device enters the low-power mode (LPM) and the QERR output is driven low, it stays latched low for the LPM duration plus two clock cycles or until RESET is driven low. The DIMM-dependent signals (DCKE0, DCKE1, DODT0, DODT1, DCS0 and DCS1) are not included in the parity check computation.

The C input controls the pinout configuration from register-A configuration (when low) to register-B configuration (when high). The C input should not be switched during normal operation. It should be hard-wired to a valid low or high level to configure the register in the desired mode.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is cleared and the data outputs is driven low quickly, relative to the time to disable the differential input receivers. However, when coming out of reset, the register becomes active quickly, relative to the time to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the 74SSTUB32868 must ensure that the outputs remain low, thus ensuring no glitches on the output.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low except QERR. The LVCMOS RESET and C inputs always must be held at a valid logic high or low level.

The device also supports low-power active operation by monitoring both system chip select (DCS0 and DCS1) and CSGEN inputs and will gate the Qn outputs from changing states when CSGEN, DCS0, and DCS1 inputs are high. If CSGEN, DCS0 or DCS1 input is low, the Qn outputs function normally. Also, if both DCS0 and DCS1 inputs are high, the device will gate the QERR output from changing states. If either DCS0 or DCS1 is low, the QERR output functions normally. The RESET input has priority over the DCS0 and DCS1 control and when driven low forces the Qn outputs low, and the QERR output high. If the chip-select control functionality is not desired, then the CSGEN input can be hard-wired to ground, in which case, the setup-time requirement for DCS0 and DCS1 would be the same as for the other D data inputs. To control the low-power mode with DCS0 and DCS1 only, then the CSGEN input should be pulled up to VCC through a pullup resistor.

The two VREF pins (A5 and AB5) are connected together internally by approximately 150 . However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

ダウンロード 字幕付きのビデオを表示 ビデオ

技術資料

star =TI が選定したこの製品の主要ドキュメント
結果が見つかりませんでした。検索条件をクリアしてから、再度検索を試してください。
2 をすべて表示
種類 タイトル 最新の英語版をダウンロード 日付
* データシート 28-Bit to 56-Bit Registered Buffer with Address-Parity Test データシート (Rev. C) 2009年 3月 12日
アプリケーション・ノート DDR2 Memory Interface Clocks and Registers - Overview 2009年 3月 25日

設計と開発

その他のアイテムや必要なリソースを参照するには、以下のタイトルをクリックして詳細ページをご覧ください。

シミュレーション・ツール

PSPICE-FOR-TI — TI Design / シミュレーション・ツール向け PSpice®

PSpice® for TI は、各種アナログ回路の機能評価に役立つ、設計とシミュレーション向けの環境です。設計とシミュレーションに適したこのフル機能スイートは、Cadence® のアナログ分析エンジンを使用しています。PSpice for TI は無償で使用でき、アナログや電源に関する TI の製品ラインアップを対象とする、業界でも有数の大規模なモデル・ライブラリが付属しているほか、選択された一部のアナログ動作モデルも利用できます。

設計とシミュレーション向けの環境である PSpice for TI (...)
パッケージ ピン数 ダウンロード
NFBGA (ZRH) 176 オプションの表示

購入と品質

記載されている情報:
  • RoHS
  • REACH
  • デバイスのマーキング
  • リード端子の仕上げ / ボールの原材料
  • MSL 定格 / ピーク リフロー
  • MTBF/FIT 推定値
  • 材質成分
  • 認定試験結果
  • 継続的な信頼性モニタ試験結果
記載されている情報:
  • ファブの拠点
  • 組み立てを実施した拠点

サポートとトレーニング

TI E2E™ フォーラムでは、TI のエンジニアからの技術サポートを提供

コンテンツは、TI 投稿者やコミュニティ投稿者によって「現状のまま」提供されるもので、TI による仕様の追加を意図するものではありません。使用条件をご確認ください。

TI 製品の品質、パッケージ、ご注文に関するお問い合わせは、TI サポートをご覧ください。​​​​​​​​​​​​​​

ビデオ