제품 상세 정보

Rating Military Operating temperature range (°C) -40 to 110
Rating Military Operating temperature range (°C) -40 to 110
CPGA (GB) 145 See data sheet
  • Class B High-Reliability Processing
  • 1-µm CMOS Technology
  • Military Operating Temperature Range -40°C to 110°C
  • SM34020A-32/40
    • 125/100-ns Instruction Cycle Time
  • Fully Programmable 32-Bit General-Purpose Processor With 512-Megabyte Linear Address Range (Bit Addressable)
  • Second-Generation Graphics System Processor
    • Object-Code Compatible With the SMJ34010
    • Enhanced Instruction Set
    • Optimized Graphics Instructions
    • Coprocessor Interface
  • Pixel Processing, XY Addressing, and Window Checking Built Into the Instruction Set
  • Programmable 1-, 2-, 4-, 8-, 16-, or 32-Bit Pixel Size With 16 Boolean and Six Arithmetic Pixel Processing Options (Raster Ops)
  • 512-Byte LRU On-Chip Instruction Cache
  • Optimized DRAM/VRAM Interface
    • Page-Mode for Burst Memory Operations
    • Dynamic Bus Sizing (16-Bit and 32-Bit Transfers)
    • Byte-Oriented CAS\ Strobes
  • Flexible Host Processor Interface
    • Supports Host Transfers
    • Direct Access to All of the SMJ34020A Address Space
    • Implicit Addressing
    • Prefetch for Enhanced Read Access
  • Programmable CRT Control
    • Composite Sync Mode
    • Separate Sync Mode
    • Synchronization to External Sync
  • Direct Support for Special Features of 1M VRAMs
    • Load Write Mask
    • Load Color Mask
    • Block Write
    • Write Using the Write Mask
  • Flexible Multi-Processor Interface
  • Packaging Options
    • 145-Pin Grid Array Ceramic Package (GB Suffix)

  • Class B High-Reliability Processing
  • 1-µm CMOS Technology
  • Military Operating Temperature Range -40°C to 110°C
  • SM34020A-32/40
    • 125/100-ns Instruction Cycle Time
  • Fully Programmable 32-Bit General-Purpose Processor With 512-Megabyte Linear Address Range (Bit Addressable)
  • Second-Generation Graphics System Processor
    • Object-Code Compatible With the SMJ34010
    • Enhanced Instruction Set
    • Optimized Graphics Instructions
    • Coprocessor Interface
  • Pixel Processing, XY Addressing, and Window Checking Built Into the Instruction Set
  • Programmable 1-, 2-, 4-, 8-, 16-, or 32-Bit Pixel Size With 16 Boolean and Six Arithmetic Pixel Processing Options (Raster Ops)
  • 512-Byte LRU On-Chip Instruction Cache
  • Optimized DRAM/VRAM Interface
    • Page-Mode for Burst Memory Operations
    • Dynamic Bus Sizing (16-Bit and 32-Bit Transfers)
    • Byte-Oriented CAS\ Strobes
  • Flexible Host Processor Interface
    • Supports Host Transfers
    • Direct Access to All of the SMJ34020A Address Space
    • Implicit Addressing
    • Prefetch for Enhanced Read Access
  • Programmable CRT Control
    • Composite Sync Mode
    • Separate Sync Mode
    • Synchronization to External Sync
  • Direct Support for Special Features of 1M VRAMs
    • Load Write Mask
    • Load Color Mask
    • Block Write
    • Write Using the Write Mask
  • Flexible Multi-Processor Interface
  • Packaging Options
    • 145-Pin Grid Array Ceramic Package (GB Suffix)

The SM34020A graphics system processor (GSP) is the second generation of an advanced high-performance CMOS 32-bit microprocessor optimized for graphics display systems. With a built-in instruction cache, the ability to simultaneously access memory and registers, and an instruction set designed to expedite raster graphics operations, the SM34020A provides user-programmable control of the CRT interface as well as the memory interface (both standard DRAM and multiport video RAM). The 4-gigabit (512-megabyte) physical address space is addressable on bit boundaries using variable width data fields (1 to 32 bits). Additional graphics addressing modes support 1-, 2-, 4-, 8-, 16- and 32-bit wide pixels.

The SM34020A is a CMOS 32-bit processor with hardware support for graphics operations such as pixel block transfers (PIXBLTS) during raster operations and curve-drawing algorithms. Also included is a complete set of general-purpose instructions with addressing modes tuned to support high-level languages. In addition to its ability to address a large external memory range, the SM34020A contains 30 general-purpose 32-bit registers, a hardware stack pointer, and a 512-byte instruction cache. On-chip functions include 64 programmable I/O registers that control CRT timing, input/output control, and parameters required by some instructions. The SM34020A directly interfaces to DRAMs and VRAMs and generates raster control signals. The SM34020A can be configured to operate as a standalone processor, or it can be used as a graphics engine with a host system. The host interface provides a generalized communication port for any standard host processor. The SM34020A also accommodates a multiprocessing or direct memory access (DMA) environment through the request/grant interface protocols. Virtual memory systems are supported through bus-fault detection and instruction continuation.

The SM34020A provides single-cycle execution of general-purpose instructions and most common integer arithmetic and Boolean operations from its instruction cache. Additionally, the SM34020A incorporates a hardware barrel shifter that provides a single-state bidirectional shift-and-rotate function for 1 to 32 bits.

The local-memory controller is designed to optimize memory access operations. It also supports pipeline memory write operations of variable-sized fields and allows memory access and instruction execution in parallel.

The SM34020A graphics-processing hardware supports pixel and pixel-array processing capabilities for both monochrome and color systems at a variety of pixel sizes. The hardware incorporates two-operand and three-operand raster operations with Boolean and arithmetic operations, XY addressing, window clipping, window-checking operations, 1 to n bits-per-pixel transforms, transparency, and plane masking. The architecture further supports operations on single pixel transfer (PIXT) instructions or on two-dimensional arrays of arbitrary size (PIXBLTS).

The SM34020A flexible graphics-processing capabilities allow software-based graphics algorithms without sacrificing performance. These algorithms include clipping to arbitrary window size, custom incremental-curve drawing, two-operand raster operations, and masked two-operand raster operations.

The SM34020A provides for extensions to the basic architecture through the coprocessor interface. Special instructions and cycle timings are included to enhance data flow to coprocessors without requiring the coprocessor to decode the instruction stream, generate system addresses, or move data for the coprocessor through the SM34020A.

The SM34020A graphics system processor (GSP) is the second generation of an advanced high-performance CMOS 32-bit microprocessor optimized for graphics display systems. With a built-in instruction cache, the ability to simultaneously access memory and registers, and an instruction set designed to expedite raster graphics operations, the SM34020A provides user-programmable control of the CRT interface as well as the memory interface (both standard DRAM and multiport video RAM). The 4-gigabit (512-megabyte) physical address space is addressable on bit boundaries using variable width data fields (1 to 32 bits). Additional graphics addressing modes support 1-, 2-, 4-, 8-, 16- and 32-bit wide pixels.

The SM34020A is a CMOS 32-bit processor with hardware support for graphics operations such as pixel block transfers (PIXBLTS) during raster operations and curve-drawing algorithms. Also included is a complete set of general-purpose instructions with addressing modes tuned to support high-level languages. In addition to its ability to address a large external memory range, the SM34020A contains 30 general-purpose 32-bit registers, a hardware stack pointer, and a 512-byte instruction cache. On-chip functions include 64 programmable I/O registers that control CRT timing, input/output control, and parameters required by some instructions. The SM34020A directly interfaces to DRAMs and VRAMs and generates raster control signals. The SM34020A can be configured to operate as a standalone processor, or it can be used as a graphics engine with a host system. The host interface provides a generalized communication port for any standard host processor. The SM34020A also accommodates a multiprocessing or direct memory access (DMA) environment through the request/grant interface protocols. Virtual memory systems are supported through bus-fault detection and instruction continuation.

The SM34020A provides single-cycle execution of general-purpose instructions and most common integer arithmetic and Boolean operations from its instruction cache. Additionally, the SM34020A incorporates a hardware barrel shifter that provides a single-state bidirectional shift-and-rotate function for 1 to 32 bits.

The local-memory controller is designed to optimize memory access operations. It also supports pipeline memory write operations of variable-sized fields and allows memory access and instruction execution in parallel.

The SM34020A graphics-processing hardware supports pixel and pixel-array processing capabilities for both monochrome and color systems at a variety of pixel sizes. The hardware incorporates two-operand and three-operand raster operations with Boolean and arithmetic operations, XY addressing, window clipping, window-checking operations, 1 to n bits-per-pixel transforms, transparency, and plane masking. The architecture further supports operations on single pixel transfer (PIXT) instructions or on two-dimensional arrays of arbitrary size (PIXBLTS).

The SM34020A flexible graphics-processing capabilities allow software-based graphics algorithms without sacrificing performance. These algorithms include clipping to arbitrary window size, custom incremental-curve drawing, two-operand raster operations, and masked two-operand raster operations.

The SM34020A provides for extensions to the basic architecture through the coprocessor interface. Special instructions and cycle timings are included to enhance data flow to coprocessors without requiring the coprocessor to decode the instruction stream, generate system addresses, or move data for the coprocessor through the SM34020A.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기1
유형 직함 날짜
* Data sheet SM34020A Graphics System Processor datasheet 2005/02/10

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

설계 툴

PROCESSORS-3P-SEARCH — Arm 기반 MPU, arm 기반 MCU 및 DSP 타사 검색 툴

TI는 여러 회사와의 협력을 통해 TI 프로세서를 사용하여 광범위한 소프트웨어, 툴 및 SOM을 제공해서 생산 단계로 가는 속도를 높이고 있습니다. 이 검색 툴을 다운로드하여 타사 솔루션을 빠르게 검색하고 필요에 맞는 올바른 타사를 찾아보세요. 여기에 나열된 소프트웨어, 툴 및 모듈은 텍사스 인스트루먼트가 아닌 독립적인 타사에서 생산 및 관리하고 있습니다.

검색 툴은 다음과 같이 제품 유형별로 분류되어 있습니다.

  • 툴에는 IDE/컴파일러, 디버그 및 추적, 시뮬레이션 및 모델링 소프트웨어, 플래시 프로그래머가 포함되어 있습니다.
  • OS에는 (...)
패키지 다운로드
CPGA (GB) 145 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상