제품 상세 정보

Configuration 1:1 SPST Number of channels 8 Power supply voltage - single (V) 5 Protocols Analog Ron (typ) (Ω) 3 CON (typ) (pF) 13.5 Bandwidth (MHz) 200 Operating temperature range (°C) -40 to 85 Features Undershoot protection Input/output continuous current (max) (mA) 128 Rating Catalog Drain supply voltage (max) (V) 5.5 Supply voltage (max) (V) 5.5
Configuration 1:1 SPST Number of channels 8 Power supply voltage - single (V) 5 Protocols Analog Ron (typ) (Ω) 3 CON (typ) (pF) 13.5 Bandwidth (MHz) 200 Operating temperature range (°C) -40 to 85 Features Undershoot protection Input/output continuous current (max) (mA) 128 Rating Catalog Drain supply voltage (max) (V) 5.5 Supply voltage (max) (V) 5.5
TSSOP (PW) 20 41.6 mm² 6.5 x 6.4 VQFN (RGY) 20 15.75 mm² 4.5 x 3.5
  • Undershoot Protection for Off-Isolation on A and B Ports Up To –2 V
  • B-Port Outputs Are Precharged by Bias Voltage (BIASV) to Minimize Signal Distortion During Live Insertion and Hot-Plugging
  • Supports PCI Hot Plug
  • Bidirectional Data Flow, With Near-Zero Propagation Delay
  • Low ON-State Resistance (ron) Characteristics (ron = 3 Typical)
  • Low Input/Output Capacitance Minimizes Loading and Signal Distortion (Cio(OFF) = 5.5 pF Typical)
  • Data and Control Inputs Provide Undershoot Clamp Diodes
  • Low Power Consumption (ICC = 3 µA Max)
  • VCC Operating Range From 4 V to 5.5 V
  • Data I/Os Support 0 to 5-V Signaling Levels (0.8-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, 5-V)
  • Control Inputs Can be Driven by TTL or 5-V/3.3-V CMOS Outputs
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Performance Tested Per JESD 22
    • 2000-V Human-Body Model (A114-B, Class II)
    • 1000-V Charged-Device Model (C101)
  • Supports Both Digital and Analog Applications: PCI Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating

  • Undershoot Protection for Off-Isolation on A and B Ports Up To –2 V
  • B-Port Outputs Are Precharged by Bias Voltage (BIASV) to Minimize Signal Distortion During Live Insertion and Hot-Plugging
  • Supports PCI Hot Plug
  • Bidirectional Data Flow, With Near-Zero Propagation Delay
  • Low ON-State Resistance (ron) Characteristics (ron = 3 Typical)
  • Low Input/Output Capacitance Minimizes Loading and Signal Distortion (Cio(OFF) = 5.5 pF Typical)
  • Data and Control Inputs Provide Undershoot Clamp Diodes
  • Low Power Consumption (ICC = 3 µA Max)
  • VCC Operating Range From 4 V to 5.5 V
  • Data I/Os Support 0 to 5-V Signaling Levels (0.8-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, 3.3-V, 5-V)
  • Control Inputs Can be Driven by TTL or 5-V/3.3-V CMOS Outputs
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Performance Tested Per JESD 22
    • 2000-V Human-Body Model (A114-B, Class II)
    • 1000-V Charged-Device Model (C101)
  • Supports Both Digital and Analog Applications: PCI Interface, Memory Interleaving, Bus Isolation, Low-Distortion Signal Gating

The SN74CBT6845C is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT6845C provides protection for undershoot up to –2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The SN74CBT6845C is an 8-bit bus switch with a single output-enable (OE\) input. When OE\ is low, the 8-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE\ is high, the 8-bit bus switch is OFF, and a high-impedance state exists between the A and B ports. The B port is precharged to BIASV through the equivalent of a 10-k resistor when OE\ is high, or if the device is powered down (VCC = 0 V).

During insertion (or removal) of a card into (or from) an active bus, the card’s output voltage may be close to GND. When the connector pins make contact, the card’s parasitic capacitance tries to force the bus signal to GND, creating a possible glitch on the active bus. This glitching effect can be reduced by using a bus switch with precharged bias voltage (BIASV) of the bus switch equal to the input threshold voltage level of the receivers on the active bus. This method will ensure that any glitch produced by insertion (or removal) of the card will not cross the input threshold region of the receivers on the active bus, minimizing the effects of live-insertion noise.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74CBT6845C is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing for minimal propagation delay. Active Undershoot-Protection Circuitry on the A and B ports of the SN74CBT6845C provides protection for undershoot up to –2 V by sensing an undershoot event and ensuring that the switch remains in the proper OFF state. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The SN74CBT6845C is an 8-bit bus switch with a single output-enable (OE\) input. When OE\ is low, the 8-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE\ is high, the 8-bit bus switch is OFF, and a high-impedance state exists between the A and B ports. The B port is precharged to BIASV through the equivalent of a 10-k resistor when OE\ is high, or if the device is powered down (VCC = 0 V).

During insertion (or removal) of a card into (or from) an active bus, the card’s output voltage may be close to GND. When the connector pins make contact, the card’s parasitic capacitance tries to force the bus signal to GND, creating a possible glitch on the active bus. This glitching effect can be reduced by using a bus switch with precharged bias voltage (BIASV) of the bus switch equal to the input threshold voltage level of the receivers on the active bus. This method will ensure that any glitch produced by insertion (or removal) of the card will not cross the input threshold region of the receivers on the active bus, minimizing the effects of live-insertion noise.

This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기13
유형 직함 날짜
* Data sheet SN74CBT6845C datasheet 2003/10/06
Application note Selecting the Correct Texas Instruments Signal Switch (Rev. E) PDF | HTML 2022/06/02
Application note Multiplexers and Signal Switches Glossary (Rev. B) PDF | HTML 2021/12/01
Application note CBT-C, CB3T, and CB3Q Signal-Switch Families (Rev. C) PDF | HTML 2021/11/19
Application brief Eliminate Power Sequencing with Powered-off Protection Signal Switches (Rev. C) PDF | HTML 2021/01/06
Selection guide Little Logic Guide 2018 (Rev. G) 2018/07/06
Selection guide Logic Guide (Rev. AB) 2017/06/12
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015/12/02
User guide LOGIC Pocket Data Book (Rev. B) 2007/01/16
More literature Digital Bus Switch Selection Guide (Rev. A) 2004/11/10
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004/07/08
User guide Signal Switch Data Book (Rev. A) 2003/11/14
Application note Bus FET Switch Solutions for Live Insertion Applications 2003/02/07

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

인터페이스 어댑터

LEADED-ADAPTER1 — TI의 5, 8, 10, 16 및 24핀 리드 패키지의 빠른 테스트를 위한 DIP 헤더 어댑터에 대한 표면 실장

The EVM-LEADED1 board allows for quick testing and bread boarding of TI's common leaded packages.  The board has footprints to convert TI's D, DBQ, DCT,DCU, DDF, DGS, DGV, and PW surface mount packages to 100mil DIP headers.     

사용 설명서: PDF
TI.com에서 구매할 수 없습니다
시뮬레이션 모델

SN74CBT6845C IBIS Model

SCDM051.ZIP (27 KB) - IBIS Model
패키지 다운로드
TSSOP (PW) 20 옵션 보기
VQFN (RGY) 20 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

권장 제품에는 본 TI 제품과 관련된 매개 변수, 평가 모듈 또는 레퍼런스 디자인이 있을 수 있습니다.

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상