제품 상세 정보

Number of ADC channels 4 Number of DAC channels 1 Analog inputs 2 Analog outputs 1 Sampling rate (max) (kHz) 25 Rating Military ADC SNR (typ) (dB) 0 DAC SNR (typ) (dB) 0 Operating temperature range (°C) 0 to 70
Number of ADC channels 4 Number of DAC channels 1 Analog inputs 2 Analog outputs 1 Sampling rate (max) (kHz) 25 Rating Military ADC SNR (typ) (dB) 0 DAC SNR (typ) (dB) 0 Operating temperature range (°C) 0 to 70
PLCC (FN) 28 155.0025 mm² 12.45 x 12.45
  • General-Purpose Signal-Processing Analog Front End (AFE)
  • Single 5-V Power Supply
  • Power Dissipation . . . 100 mW Typ
  • Signal-to-Distortion Ratio . . . 70 dB Typ
  • Programmable Filter Bandwidths (Up to 10.8 kHz) and Synchronous ADC and DAC Sampling
  • Serial-Port Interface
  • Monitor Output With Programmable Gains of 0 dB, \x968 dB, \x96 18 dB, and Squelch
  • Two Sets of Differential Inputs With Programmable Gains of 0 dB, 6 dB, 12 dB, and Squelch
  • Differential or Single-Ended Analog Output With Programmable Gains of 0 dB, \x966 dB, \x96 12 dB, and Squelch
  • Differential Outputs Drive 3-V Peak Into a 600- Differential Load
  • Differential Architecture Throughout
  • 1-um Advanced LinEPICTM Process
  • 14-Bit Dynamic-Range ADC and DAC
  • 2s-Complement Data Format
  • Application Report Available

    The TLC320AC01 is functionally equivalent to the TLC320AC02 and differs in the electrical specifications as shown in Appendix C.
    Designing with the TLC320AC01 Analog Interface for DSPs (SLAA006)
    LinEPIC is a trademark of Texas Instruments Incorporated.

  • General-Purpose Signal-Processing Analog Front End (AFE)
  • Single 5-V Power Supply
  • Power Dissipation . . . 100 mW Typ
  • Signal-to-Distortion Ratio . . . 70 dB Typ
  • Programmable Filter Bandwidths (Up to 10.8 kHz) and Synchronous ADC and DAC Sampling
  • Serial-Port Interface
  • Monitor Output With Programmable Gains of 0 dB, \x968 dB, \x96 18 dB, and Squelch
  • Two Sets of Differential Inputs With Programmable Gains of 0 dB, 6 dB, 12 dB, and Squelch
  • Differential or Single-Ended Analog Output With Programmable Gains of 0 dB, \x966 dB, \x96 12 dB, and Squelch
  • Differential Outputs Drive 3-V Peak Into a 600- Differential Load
  • Differential Architecture Throughout
  • 1-um Advanced LinEPICTM Process
  • 14-Bit Dynamic-Range ADC and DAC
  • 2s-Complement Data Format
  • Application Report Available

    The TLC320AC01 is functionally equivalent to the TLC320AC02 and differs in the electrical specifications as shown in Appendix C.
    Designing with the TLC320AC01 Analog Interface for DSPs (SLAA006)
    LinEPIC is a trademark of Texas Instruments Incorporated.

The TLC320AC01 analog interface circuit (AIC) is an audio-band processor that provides an analog-to-digital and digital-to-analog input/output interface system on a single monolithic CMOS chip. This device integrates a band-pass switched-capacitor antialiasing input filter, a 14-bit-resolution analog-to-digital converter (ADC), a 14-bit-resolution digital-to-analog converter (DAC), a low-pass switched-capacitor output-reconstruction filter, (sin x)/x compensation, and a serial port for data and control transfers.

The internal circuit configuration and performance parameters are determined by reading control information into the eight available data registers. The register data sets up the device for a given mode of operation and application.

The major functions of the TLC320AC01 are: 1. To convert audio-signal data to digital format by the ADC channel 2. To provide the interface and control logic to transfer data between its serial input and output terminals and a digital signal processor (DSP) or microprocessor 3. To convert received digital data back to an audio signal through the DAC channel

The antialiasing input low-pass filter is a switched-capacitor filter with a sixth-order elliptic characteristic. The high-pass filter is a single-pole filter to preserve low-frequency response as the low-pass filter cutoff is adjusted. There is a three-pole continuous-time filter that precedes this filter to eliminate any aliasing caused by the filter clock signal.

The output-reconstruction switched-capacitor filter is a sixth-order elliptic transitional low-pass filter followed by a second-order (sin x)/x correction filter. This filter is followed by a three-pole continuous-time filter to eliminate images of the filter clock signal.

The TLC320AC01 consists of two signal-processing channels, an ADC channel and a DAC channel, and the associated digital control. The two channels operate synchronously; data reception at the DAC channel and data transmission from the ADC channel occur during the same time interval. The data transfer is in2s-complement format.

There are three basic modes of operation available: the stand-alone analog-interface mode, the master-slave mode, and the linear-codec mode. In the stand-alone mode, the TLC320AC01 generates the shift clock and frame synchronization for the data transfers and is the only AIC used. The master-slave mode has one TLC320AC01 as the master that generates the master-shift clock and frame synchronization; the remaining AICs are slaves to these signals. In the linear-codec mode, the shift clock and the frame-synchronization signals are externally generated and the timing can be any of the standard codec-timing patterns.

Typical applications for this device include modems, speech processing, analog interface for DSPs, industrial-process control, acoustical-signal processing, spectral analysis, data acquisition, and instrumentation recorders.

The TLC320AC01C is characterized for operation from 0°C to 70°C.

The TLC320AC01 analog interface circuit (AIC) is an audio-band processor that provides an analog-to-digital and digital-to-analog input/output interface system on a single monolithic CMOS chip. This device integrates a band-pass switched-capacitor antialiasing input filter, a 14-bit-resolution analog-to-digital converter (ADC), a 14-bit-resolution digital-to-analog converter (DAC), a low-pass switched-capacitor output-reconstruction filter, (sin x)/x compensation, and a serial port for data and control transfers.

The internal circuit configuration and performance parameters are determined by reading control information into the eight available data registers. The register data sets up the device for a given mode of operation and application.

The major functions of the TLC320AC01 are: 1. To convert audio-signal data to digital format by the ADC channel 2. To provide the interface and control logic to transfer data between its serial input and output terminals and a digital signal processor (DSP) or microprocessor 3. To convert received digital data back to an audio signal through the DAC channel

The antialiasing input low-pass filter is a switched-capacitor filter with a sixth-order elliptic characteristic. The high-pass filter is a single-pole filter to preserve low-frequency response as the low-pass filter cutoff is adjusted. There is a three-pole continuous-time filter that precedes this filter to eliminate any aliasing caused by the filter clock signal.

The output-reconstruction switched-capacitor filter is a sixth-order elliptic transitional low-pass filter followed by a second-order (sin x)/x correction filter. This filter is followed by a three-pole continuous-time filter to eliminate images of the filter clock signal.

The TLC320AC01 consists of two signal-processing channels, an ADC channel and a DAC channel, and the associated digital control. The two channels operate synchronously; data reception at the DAC channel and data transmission from the ADC channel occur during the same time interval. The data transfer is in2s-complement format.

There are three basic modes of operation available: the stand-alone analog-interface mode, the master-slave mode, and the linear-codec mode. In the stand-alone mode, the TLC320AC01 generates the shift clock and frame synchronization for the data transfers and is the only AIC used. The master-slave mode has one TLC320AC01 as the master that generates the master-shift clock and frame synchronization; the remaining AICs are slaves to these signals. In the linear-codec mode, the shift clock and the frame-synchronization signals are externally generated and the timing can be any of the standard codec-timing patterns.

Typical applications for this device include modems, speech processing, analog interface for DSPs, industrial-process control, acoustical-signal processing, spectral analysis, data acquisition, and instrumentation recorders.

The TLC320AC01C is characterized for operation from 0°C to 70°C.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기10
유형 직함 날짜
* Data sheet TLC320AC01C Single-Supply Analog Interface Circuit datasheet (Rev. D) 1996/10/01
Application note Out-of-Band Noise Measurement Issues for Audio Devices (Rev. A) 2019/12/31
Application note Audio Serial Interface Configurations for Audio Codecs (Rev. A) 2019/06/27
Application note Using the MSP430 Launchpad as a Standalone I2C Host for Audio Products (Rev. A) 2013/10/28
Application note Audio Serial Interface Configurations for Audio Codecs 2010/09/22
Application note Solving Enumeration Errors in USB Audio DAC and CODEC Designs 2009/10/30
Application note Configuring I2S to Generate BCLK from Codec Devices & WCLK from McBSP Port 2009/07/08
Application note Low Voltage Modem Platform Based on TMS320LC56 1997/01/01
Application note Multiple TLC320AC01/02 Analog I/F Circuits on One TMS320C5x DSP Serial Port 1996/08/19
Application note Designing with the TLC320AC01 Analog Interface for DSPs 1995/05/01

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
패키지 다운로드
PLCC (FN) 28 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상