인터페이스 기타 인터페이스

TLK1211

활성

PON용 기가비트 이더넷 시리얼라이저/디시리얼라이저

제품 상세 정보

Protocols Catalog, Telecom SerDes Rating Catalog Operating temperature range (°C) -40 to 85
Protocols Catalog, Telecom SerDes Rating Catalog Operating temperature range (°C) -40 to 85
HVQFP (RCP) 64 144 mm² 12 x 12
  • 0.6-Gbps to 1.3-Gbps Serializer/Deserializer
  • Low Power Consumption <250 mW (typ) at 1.25 Gbps
  • Fast Relock Times Less Than 256 ns (Typ) Suitable
    for EPON/GEPON Applications
  • LVPECL Compatible Differential I/O on High Speed Interface
  • Single Monolithic PLL Design
  • Support For 10-Bit Interface or Reduced Interface 5-Bit DDR
    (Double Data Rate) Clocking
  • Receiver Differential Input Thresholds 200 mV Minimum
  • IEEE 802.3 Gigabit Ethernet Compliant
  • ANSI X3.230-1994 (FC-PH) Fibre Channel Compliant
  • Advanced 0.25-µm CMOS Technology
  • No External Filter Capacitors Required
  • Comprehensive Suite of Built-In Testability
  • IEEE 1149.1 JTAG Support
  • 2.5-V Supply Voltage for Lowest Power Operation
  • 3.3-V Tolerant on LVTTL Inputs
  • Hot Plug Protection
  • 64-Pin VQFP With Thermally Enhanced Package (PowerPAD)
  • CPRI Data Rate Compatible (614 Mbps, 1.22 Gbps)
  • Industrial Temperature Range Supported: –40°C to 85°C

PowerPAD Is a trademark of Texas Instruments

  • 0.6-Gbps to 1.3-Gbps Serializer/Deserializer
  • Low Power Consumption <250 mW (typ) at 1.25 Gbps
  • Fast Relock Times Less Than 256 ns (Typ) Suitable
    for EPON/GEPON Applications
  • LVPECL Compatible Differential I/O on High Speed Interface
  • Single Monolithic PLL Design
  • Support For 10-Bit Interface or Reduced Interface 5-Bit DDR
    (Double Data Rate) Clocking
  • Receiver Differential Input Thresholds 200 mV Minimum
  • IEEE 802.3 Gigabit Ethernet Compliant
  • ANSI X3.230-1994 (FC-PH) Fibre Channel Compliant
  • Advanced 0.25-µm CMOS Technology
  • No External Filter Capacitors Required
  • Comprehensive Suite of Built-In Testability
  • IEEE 1149.1 JTAG Support
  • 2.5-V Supply Voltage for Lowest Power Operation
  • 3.3-V Tolerant on LVTTL Inputs
  • Hot Plug Protection
  • 64-Pin VQFP With Thermally Enhanced Package (PowerPAD)
  • CPRI Data Rate Compatible (614 Mbps, 1.22 Gbps)
  • Industrial Temperature Range Supported: –40°C to 85°C

PowerPAD Is a trademark of Texas Instruments

The TLK1211RCP gigabit ethernet transceiver provides for ultrahigh-speed, full-duplex, point-to-point data transmissions. This device is based on the timing requirements of the 10-bit interface specification by the IEEE 802.3 gigabit ethernet specification and is also compliant with the ANSI X3.230-1994 (FC-PH) fibre channel standard. The device supports data rates from 0.6 Gbps to 1.3 Gbps.

The primary application of the transceiver is to provide building blocks for point-to-point baseband data transmission over controlled impedance media of 50 Ω. The transmission media can be printed-circuit board traces, copper cables, or fiber-optical media. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The transceiver performs the data serialization, deserialization, and clock extraction functions for a physical layer interface device. The transceiver operates at 1.25 Gbps (typical), providing up to 1 Gbps of data bandwidth over a copper or optical media interface.

The transceiver supports both the defined 10-bit interface (TBI) and a reduced 5-bit interface utilizing double data rate (DDR) clocking. In the TBI mode the serializer/deserializer (SERDES) accepts 10-bit wide 8b/10b parallel encoded data bytes. The parallel data bytes are serialized and transmitted differentially at PECL compatible voltage levels. The SERDES extracts clock information from the input serial stream and deserializes the data, outputting a parallel 10-bit data byte.

In the DDR mode the parallel interface accepts 5-bit wide 8b/10b encoded data aligned on both the rising and falling edges of the reference clock. The data is clocked most significant bit first (bits 0–4 of the 8b/10b encoded data) on the rising edge of the clock and the least significant bits (bits 5–9 of the 8b/10b encoded data) are clocked on the falling edge of the clock.

The transceiver provides a comprehensive series of built-in tests for self-test purposes including loopback and pseudorandom binary sequence (PRBS) generation and verification. An IEEE 1149.1 JTAG port is also supported.

The transceiver is housed in a high-performance, thermally enhanced, 64-pin VQFP PowerPAD package. Use of the PowerPAD package does not require any special considerations except to note that the PowerPAD, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. It is recommended that the device PowerPAD be soldered to the thermal land on the board.

The transceiver is characterized for operation from –40°C to 85°C.

The transceiver uses a 2.5-V supply. The I/O section is 3.3-V compatible. With a 2.5-V supply the chipset is very power-efficient, dissipating less than 250 mW typical power when operating at 1.25 Gbps.

The transceiver is designed to be hot plug capable. A power-on reset causes RBC0, RBC1, the parallel output signal terminals, TXP, and TXN to be held in a high-impedance state.

The TLK1211RCP gigabit ethernet transceiver provides for ultrahigh-speed, full-duplex, point-to-point data transmissions. This device is based on the timing requirements of the 10-bit interface specification by the IEEE 802.3 gigabit ethernet specification and is also compliant with the ANSI X3.230-1994 (FC-PH) fibre channel standard. The device supports data rates from 0.6 Gbps to 1.3 Gbps.

The primary application of the transceiver is to provide building blocks for point-to-point baseband data transmission over controlled impedance media of 50 Ω. The transmission media can be printed-circuit board traces, copper cables, or fiber-optical media. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

The transceiver performs the data serialization, deserialization, and clock extraction functions for a physical layer interface device. The transceiver operates at 1.25 Gbps (typical), providing up to 1 Gbps of data bandwidth over a copper or optical media interface.

The transceiver supports both the defined 10-bit interface (TBI) and a reduced 5-bit interface utilizing double data rate (DDR) clocking. In the TBI mode the serializer/deserializer (SERDES) accepts 10-bit wide 8b/10b parallel encoded data bytes. The parallel data bytes are serialized and transmitted differentially at PECL compatible voltage levels. The SERDES extracts clock information from the input serial stream and deserializes the data, outputting a parallel 10-bit data byte.

In the DDR mode the parallel interface accepts 5-bit wide 8b/10b encoded data aligned on both the rising and falling edges of the reference clock. The data is clocked most significant bit first (bits 0–4 of the 8b/10b encoded data) on the rising edge of the clock and the least significant bits (bits 5–9 of the 8b/10b encoded data) are clocked on the falling edge of the clock.

The transceiver provides a comprehensive series of built-in tests for self-test purposes including loopback and pseudorandom binary sequence (PRBS) generation and verification. An IEEE 1149.1 JTAG port is also supported.

The transceiver is housed in a high-performance, thermally enhanced, 64-pin VQFP PowerPAD package. Use of the PowerPAD package does not require any special considerations except to note that the PowerPAD, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. It is recommended that the device PowerPAD be soldered to the thermal land on the board.

The transceiver is characterized for operation from –40°C to 85°C.

The transceiver uses a 2.5-V supply. The I/O section is 3.3-V compatible. With a 2.5-V supply the chipset is very power-efficient, dissipating less than 250 mW typical power when operating at 1.25 Gbps.

The transceiver is designed to be hot plug capable. A power-on reset causes RBC0, RBC1, the parallel output signal terminals, TXP, and TXN to be held in a high-impedance state.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기1
유형 직함 날짜
* Data sheet Ethernet Transceivers . datasheet (Rev. D) 2011/03/30

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

시뮬레이션 모델

TLK1211 IBIS Model

SLLM222.ZIP (36 KB) - IBIS Model
시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
시뮬레이션 툴

TINA-TI — SPICE 기반 아날로그 시뮬레이션 프로그램

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
사용 설명서: PDF
패키지 다운로드
HVQFP (RCP) 64 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상