인터페이스 기타 인터페이스

TLK2501

활성

1.5~2.5Gbps 트랜시버

제품 상세 정보

Protocols Catalog Rating Catalog Operating temperature range (°C) -40 to 85
Protocols Catalog Rating Catalog Operating temperature range (°C) -40 to 85
HVQFP (RCP) 64 144 mm² 12 x 12
  • Hot-Plug Protection
  • 1.5 to 2.5 Gigabits Per Second (Gbps) Serializer/Deserializer
  • High-Performance 64-Pin VQFP Thermally Enhanced Package (PowerPAD™)
  • 2.5-V Power Supply for Low Power Operation
  • Programmable Voltage Output Swing on Serial Output
  • Interfaces to Backplane, Copper Cables, or Optical Converters
  • Rated for Industrial Temperature Range
  • On-Chip 8-Bit/10-Bit (8B/10B) Encoding/Decoding, Comma Alignment, and Link Synchronization
  • On-Chip PLL Provides Clock Synthesis From Low-Speed Reference
  • Receiver Differential Input Thresholds 200 mV Minimum
  • Typical Power: 360 mW
  • Loss of Signal (LOS) Detection
  • Ideal for High-Speed Backplane Interconnect and Point-to-Point Data Link

PowerPAD is a trademark of Texas Instruments.

  • Hot-Plug Protection
  • 1.5 to 2.5 Gigabits Per Second (Gbps) Serializer/Deserializer
  • High-Performance 64-Pin VQFP Thermally Enhanced Package (PowerPAD™)
  • 2.5-V Power Supply for Low Power Operation
  • Programmable Voltage Output Swing on Serial Output
  • Interfaces to Backplane, Copper Cables, or Optical Converters
  • Rated for Industrial Temperature Range
  • On-Chip 8-Bit/10-Bit (8B/10B) Encoding/Decoding, Comma Alignment, and Link Synchronization
  • On-Chip PLL Provides Clock Synthesis From Low-Speed Reference
  • Receiver Differential Input Thresholds 200 mV Minimum
  • Typical Power: 360 mW
  • Loss of Signal (LOS) Detection
  • Ideal for High-Speed Backplane Interconnect and Point-to-Point Data Link

PowerPAD is a trademark of Texas Instruments.

The TLK2501 is a member of the transceiver family of multigigabit transceivers used in ultrahigh-speed bidirectional point-to-point data transmission systems. The TLK2501 supports an effective serial interface speed of 1.5 Gbps to 2.5 Gbps, providing up to 2 Gbps of data bandwidth. The TLK2501 is pin-for-pin compatible with the TLK2500. The TLK2501 is both pin-for-pin compatible with and functionally identical to the TLK1501, a 0.6 to 1.5 Gbps transceiver, and the TLK3101, a 2.5 to 3.125 Gbps transceiver, providing a wide range of performance solutions with no required board layout changes.

The primary application of this chip is to provide very high-speed I/O data channels for point-to-point baseband data transmission over controlled impedance media of approximately 50 . The transmission media can be printed-circuit board, copper cables, or fiber-optic cable. The maximum rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

This device can also be used to replace parallel data transmission architectures by providing a reduction in the number of traces, connector terminals, and transmit/receive terminals. Parallel data loaded into the transmitter is delivered to the receiver over a serial channel, which can be a coaxial copper cable, a controlled impedance backplane, or an optical link. It is then reconstructed into its original parallel format. It offers significant power and cost savings over current solutions, as well as scalability for higher data rate in the future.

The TLK2501 performs data conversion parallel-to-serial and serial-to-parallel. The clock extraction functions as a physical layer interface device. The serial transceiver interface operates at a maximum speed of 2.5 Gbps. The transmitter latches 16-bit parallel data at a rate based on the supplied reference clock (GTX_CLK). The 16-bit parallel data is internally encoded into 20 bits using an 8-bit/10-bit (8B/10B) encoding format. The resulting 20-bit word is then transmitted differentially at 20 times the reference clock (GTX_CLK) rate. The receiver section performs the serial-to-parallel conversion on the input data, synchronizing the resulting 20-bit wide parallel data to the extracted reference clock (RX_CLK). It then decodes the 20 bit wide data using 8-bit/10-bit decoding format resulting in 16 bits of parallel data at the receive data terminals (RXD0-15). The outcome is an effective data payload of 1.20 Gbps to 2.0 Gbps (16 bits data x the GTX_CLK frequency).

The TLK2501 is housed in a high performance, thermally enhanced, 64-pin VQFP PowerPAD package. Use of the PowerPAD package does not require any special considerations except to note that the PowerPAD, which has an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. It is recommended that the TLK2501 PowerPAD is soldered to the thermal land on the board. All ac performance specifications in this data sheet are measured with the PowerPAD soldered to the test board.

The TLK2501 provides an internal loopback capability for self-test purposes. Serial data from the serializer is passed directly to the deserializer, allowing the protocol device a functional self-check of the physical interface.

The TLK2501 is designed to be hot plug capable. An on-chip power-on reset circuit holds the RX_CLK low during power up. This circuit also holds the parallel side output signal terminals as well as DOUTTXP and DOUTTXN in a high-impedance state during power up.

The TLK2501 has a loss of signal detection circuit for conditions where the incoming signal no longer has a sufficient voltage amplitude to keep the clock recovery circuit in lock.

To prevent a data bit error from causing a data packet from being interpreted as a comma and thus causing the erroneous word alignment by the comma detection circuit, the comma word alignment circuit is turned off after the link is properly established in TLK2501.

The TLK2501 allows users to implement redundant ports by connecting receive data bus terminals from two TLK2501 devices together. Asserting the LCKREFN to go to a low state causes the receive data bus terminals, RXD[0:15], RX_CLK and RX_ER, RX_DV/LOS to go to a high-impedance state. This places the device in a ransmit-only mode since the receiver is not tracking the data.

The TLK2501 uses a 2.5-V supply. The I/O section is 3 V compatible. With the 2.5-V supply the chipset is very power-efficient, consuming less than 360 mW typically. The TLK2501 is characterized for operation from –40°C to 85°C.

The TLK2501 is a member of the transceiver family of multigigabit transceivers used in ultrahigh-speed bidirectional point-to-point data transmission systems. The TLK2501 supports an effective serial interface speed of 1.5 Gbps to 2.5 Gbps, providing up to 2 Gbps of data bandwidth. The TLK2501 is pin-for-pin compatible with the TLK2500. The TLK2501 is both pin-for-pin compatible with and functionally identical to the TLK1501, a 0.6 to 1.5 Gbps transceiver, and the TLK3101, a 2.5 to 3.125 Gbps transceiver, providing a wide range of performance solutions with no required board layout changes.

The primary application of this chip is to provide very high-speed I/O data channels for point-to-point baseband data transmission over controlled impedance media of approximately 50 . The transmission media can be printed-circuit board, copper cables, or fiber-optic cable. The maximum rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

This device can also be used to replace parallel data transmission architectures by providing a reduction in the number of traces, connector terminals, and transmit/receive terminals. Parallel data loaded into the transmitter is delivered to the receiver over a serial channel, which can be a coaxial copper cable, a controlled impedance backplane, or an optical link. It is then reconstructed into its original parallel format. It offers significant power and cost savings over current solutions, as well as scalability for higher data rate in the future.

The TLK2501 performs data conversion parallel-to-serial and serial-to-parallel. The clock extraction functions as a physical layer interface device. The serial transceiver interface operates at a maximum speed of 2.5 Gbps. The transmitter latches 16-bit parallel data at a rate based on the supplied reference clock (GTX_CLK). The 16-bit parallel data is internally encoded into 20 bits using an 8-bit/10-bit (8B/10B) encoding format. The resulting 20-bit word is then transmitted differentially at 20 times the reference clock (GTX_CLK) rate. The receiver section performs the serial-to-parallel conversion on the input data, synchronizing the resulting 20-bit wide parallel data to the extracted reference clock (RX_CLK). It then decodes the 20 bit wide data using 8-bit/10-bit decoding format resulting in 16 bits of parallel data at the receive data terminals (RXD0-15). The outcome is an effective data payload of 1.20 Gbps to 2.0 Gbps (16 bits data x the GTX_CLK frequency).

The TLK2501 is housed in a high performance, thermally enhanced, 64-pin VQFP PowerPAD package. Use of the PowerPAD package does not require any special considerations except to note that the PowerPAD, which has an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor. It is recommended that the TLK2501 PowerPAD is soldered to the thermal land on the board. All ac performance specifications in this data sheet are measured with the PowerPAD soldered to the test board.

The TLK2501 provides an internal loopback capability for self-test purposes. Serial data from the serializer is passed directly to the deserializer, allowing the protocol device a functional self-check of the physical interface.

The TLK2501 is designed to be hot plug capable. An on-chip power-on reset circuit holds the RX_CLK low during power up. This circuit also holds the parallel side output signal terminals as well as DOUTTXP and DOUTTXN in a high-impedance state during power up.

The TLK2501 has a loss of signal detection circuit for conditions where the incoming signal no longer has a sufficient voltage amplitude to keep the clock recovery circuit in lock.

To prevent a data bit error from causing a data packet from being interpreted as a comma and thus causing the erroneous word alignment by the comma detection circuit, the comma word alignment circuit is turned off after the link is properly established in TLK2501.

The TLK2501 allows users to implement redundant ports by connecting receive data bus terminals from two TLK2501 devices together. Asserting the LCKREFN to go to a low state causes the receive data bus terminals, RXD[0:15], RX_CLK and RX_ER, RX_DV/LOS to go to a high-impedance state. This places the device in a ransmit-only mode since the receiver is not tracking the data.

The TLK2501 uses a 2.5-V supply. The I/O section is 3 V compatible. With the 2.5-V supply the chipset is very power-efficient, consuming less than 360 mW typically. The TLK2501 is characterized for operation from –40°C to 85°C.

다운로드 스크립트와 함께 비디오 보기 동영상

기술 문서

star =TI에서 선정한 이 제품의 인기 문서
검색된 결과가 없습니다. 검색어를 지우고 다시 시도하십시오.
모두 보기4
유형 직함 날짜
* Data sheet 1.5 to 2.5 Gbps Transceiver datasheet (Rev. D) 2003/06/27
Application note Using TI's CDCV304 w/Backplane Transceiver (TLK1201/1501/2201/2501/2701/3101) (Rev. A) 2006/04/20
Application note Interfacing Between LVPECL, VML, CML and LVDS Levels 2002/12/17
EVM User's guide TLK2501 Serdes EVM Kit Setup and Usage 2000/09/12

설계 및 개발

추가 조건 또는 필수 리소스는 사용 가능한 경우 아래 제목을 클릭하여 세부 정보 페이지를 확인하세요.

평가 보드

TLK2501EVM — TLK2501 시리얼라이저/디시리얼라이저 평가 모듈

The TLK2501 serdes evaluation module (EVM) board is used to evaluate the TLK2501 device (VQFP) and associated optical interface (NetLight™) for point-to-point data transmission applications.

The board enables the designer to connect 50 ohm parallel buses to both transmiter and receiver connectors. (...)

사용 설명서: PDF
TI.com에서 구매할 수 없습니다
시뮬레이션 툴

PSPICE-FOR-TI — TI 설계 및 시뮬레이션 툴용 PSpice®

TI용 PSpice®는 아날로그 회로의 기능을 평가하는 데 사용되는 설계 및 시뮬레이션 환경입니다. 완전한 기능을 갖춘 이 설계 및 시뮬레이션 제품군은 Cadence®의 아날로그 분석 엔진을 사용합니다. 무료로 제공되는 TI용 PSpice에는 아날로그 및 전력 포트폴리오뿐 아니라 아날로그 행동 모델에 이르기까지 업계에서 가장 방대한 모델 라이브러리 중 하나가 포함되어 있습니다.

TI 설계 및 시뮬레이션 환경용 PSpice는 기본 제공 라이브러리를 이용해 복잡한 혼합 신호 설계를 시뮬레이션할 수 있습니다. 레이아웃 및 제작에 (...)
시뮬레이션 툴

TINA-TI — SPICE 기반 아날로그 시뮬레이션 프로그램

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
사용 설명서: PDF
패키지 다운로드
HVQFP (RCP) 64 옵션 보기

주문 및 품질

포함된 정보:
  • RoHS
  • REACH
  • 디바이스 마킹
  • 납 마감/볼 재질
  • MSL 등급/피크 리플로우
  • MTBF/FIT 예측
  • 물질 성분
  • 인증 요약
  • 지속적인 신뢰성 모니터링
포함된 정보:
  • 팹 위치
  • 조립 위치

지원 및 교육

TI 엔지니어의 기술 지원을 받을 수 있는 TI E2E™ 포럼

콘텐츠는 TI 및 커뮤니티 기고자에 의해 "있는 그대로" 제공되며 TI의 사양으로 간주되지 않습니다. 사용 약관을 참조하십시오.

품질, 패키징, TI에서 주문하는 데 대한 질문이 있다면 TI 지원을 방문하세요. ​​​​​​​​​​​​​​

동영상