SBASAG2C December   2023  – March 2025 ADS9227 , ADS9228 , ADS9229

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Thermal Information
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Electrical Characteristics
    6. 6.6  Timing Requirements
    7. 6.7  Switching Characteristics
    8. 6.8  Timing Diagrams
    9. 6.9  Typical Characteristics: All Devices
    10. 6.10 Typical Characteristics: ADS9229
    11. 6.11 Typical Characteristics: ADS9228
    12. 6.12 Typical Characteristics: ADS9227
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Analog Inputs
      2. 7.3.2  Analog Input Bandwidth
      3. 7.3.3  ADC Transfer Function
      4. 7.3.4  Reference
        1. 7.3.4.1 Internal Reference Voltage
        2. 7.3.4.2 External Reference Voltage
      5. 7.3.5  Temperature Sensor
      6. 7.3.6  Data Averaging
      7. 7.3.7  Digital Down Converter
      8. 7.3.8  Data Interface
        1. 7.3.8.1 Data Frame Width
        2. 7.3.8.2 ADC Output Data Randomizer
        3. 7.3.8.3 Synchronizing Multiple ADCs
      9. 7.3.9  Test Patterns for Data Interface
        1. 7.3.9.1 Fixed Pattern
        2. 7.3.9.2 Digital Ramp
        3. 7.3.9.3 Alternating Test Pattern
      10. 7.3.10 ADC Sampling Clock Input
    4. 7.4 Device Functional Modes
      1. 7.4.1 Reset
      2. 7.4.2 Power-Down Options
      3. 7.4.3 Normal Operation
      4. 7.4.4 Initialization Sequence
    5. 7.5 Programming
      1. 7.5.1 Register Write
      2. 7.5.2 Register Read
      3. 7.5.3 Multiple Devices: Daisy-Chain Topology for SPI Configuration
        1. 7.5.3.1 Register Write With Daisy-Chain
        2. 7.5.3.2 Register Read With Daisy-Chain
  9. Register Map
    1. 8.1 Register Bank 0
    2. 8.2 Register Bank 1
    3. 8.3 Register Bank 2
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Data Acquisition (DAQ) Circuit for ≤20kHz Input Signal Bandwidth
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Data Acquisition (DAQ) Circuit for ≤100kHz Input Signal Bandwidth
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Application Curves
      3. 9.2.3 Data Acquisition (DAQ) Circuit for ≤1MHz Input Signal Bandwidth
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

ADC Sampling Clock Input

Use a low-jitter external clock with a high slew rate to maximize SNR performance. Operate the ADS922x with a differential or single-ended clock input. Clock amplitude impacts the ADC aperture jitter and, consequently, the SNR. For maximum SNR performance, provide a clock signal with fast slew rates that maximizes swing between VDD_1V8 and GND levels.

Make sure the sampling clock is a free-running continuous clock. The ADC generates a valid output data, data clock, and frame clock tPU_SMPL_CLK, as specified in the Switching Characteristics after a free-running sampling clock is applied. When the sampling clock is stopped, the ADC is in power-down and the output data, data clock, and frame clock are invalid.

Figure 7-11 shows a diagram of the differential sampling clock input. For this configuration, connect the differential sampling clock input to the SMPL_CLKP and SMPL_CLKM pins. Figure 7-12 shows a diagram of the single-ended sampling clock input. In this configuration, connect the single-ended sampling clock to SMPL_CLKP and connect SMPL_CLKM to ground.

ADS9227 ADS9228 ADS9229 AC-Coupled Differential
                        Sampling ClockFigure 7-11 AC-Coupled Differential Sampling Clock
ADS9227 ADS9228 ADS9229 Single-Ended Sampling
                        ClockFigure 7-12 Single-Ended Sampling Clock