SLUSA78C July   2010  – July 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Automatic Internal Soft-Start Charger Current
      2. 8.3.2 High-Accuracy Current-Sense Amplifier
      3. 8.3.3 Charge Timeout
      4. 8.3.4 Input Overcurrent Protection (ACOC)
      5. 8.3.5 Charge Overcurrent Protection (CHGOCP)
      6. 8.3.6 Battery Overvoltage Protection (BATOVP)
      7. 8.3.7 Battery Shorted to Ground (BATLOWV)
      8. 8.3.8 Thermal Shutdown Protection (TSHUT)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable and Disable Charging
      2. 8.4.2 Continuous Conduction Mode (CCM)
      3. 8.4.3 Discontinuous Conduction Mode (DCM)
    5. 8.5 Programming
      1. 8.5.1  SMBus Interface
      2. 8.5.2  Battery-Charger Commands
      3. 8.5.3  Setting Charger Options
      4. 8.5.4  Setting the Charge Current
      5. 8.5.5  Setting the Charge Voltage
      6. 8.5.6  Setting Input Current
      7. 8.5.7  Adapter Detect and ACOK Output
      8. 8.5.8  Converter Operation
      9. 8.5.9  EMI Switching Frequency Adjust
      10. 8.5.10 Inductor Short, MOSFET Short Protection
      11. 8.5.11 Independent Comparator
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Negative Output Voltage Protection
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Input Capacitor
        4. 9.2.2.4 Output Capacitor
        5. 9.2.2.5 Power MOSFETs Selection
        6. 9.2.2.6 Input Filter Design
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 IC Design Guideline
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Voltage SRN, SRP, ACN, ACP, VCC –0.3 30 V
PHASE –2 30
ACDET, SDA, SCL, LODRV, REGN, IOUT, ILIM, ACOK, IFAULT, CMPIN, CMPOUT –0.3 7
BTST, HIDRV –0.3 36
Maximum difference voltage SRP–SRN, ACP–ACN –0.5 0.5
Junction temperature, TJ –40 155 °C
Storage temperature, Tstg –55 155 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the data book for thermal limitations and considerations of packages.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Voltage SRN, SRP, ACN, ACP, VCC 0 24 V
PHASE –2 24
ACDET, SDA, SCL, LODRV, REGN, IOUT, ILIM, ACOK, IFAULT, CMPIN, CMPOUT 0 6.5
BTST, HIDRV 0 30
Maximum difference voltage SRP–SRN, ACP–ACN –0.2 0.2 V
Junction temperature, TJ 0 125 °C

7.4 Thermal Information

THERMAL METRIC(1) bq24707x UNIT
RGR [VQFN]
20 PINS
RθJA Junction-to-ambient thermal resistance 46.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 56.9 °C/W
RθJB Junction-to-board thermal resistance 46.6 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 15.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

4.5 V ≤ V(VCC) ≤ 24 V, 0°C ≤ TJ ≤ 125°C, typical values are at TA = 25°C, with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OPERATING CONDITIONS
VVCC_OP VCC Input voltage operating 4.5 24 V
CHARGE VOLTAGE REGULATION
VBAT_REG_RNG BAT voltage regulation 1.024 19.2 V
VBAT_REG_ACC Charge voltage regulation accuracy ChargeVoltage() = 0x41A0H 16.716 16.8 16.884 V
–0.5% 0.5%
ChargeVoltage() = 0x3130H 12.529 12.592 12.655 V
–0.5% 0.5%
ChargeVoltage() = 0x20D0H 8.35 8.4 8.45 V
–0.6% 0.6%
ChargeVoltage() = 0x1060H 4.163 4.192 4.221 V
–0.7% 0.7%
CHARGE CURRENT REGULATION
VIREG_CHG_RNG Charge current regulation differential voltage VIREG_CHG = VSRP - VSRN 0 81.28 mV
ICHRG_REG_ACC Charge current regulation accuracy 10-mΩ current-sensing resistor ChargeCurrent() = 0x1000H 3973 4096 4219 mA
–3% 3%
ChargeCurrent() = 0x0800H 1946 2048 2150 mA
–5% 5%
ChargeCurrent() = 0x0200H 410 512 614 mA
–20% 20%
ChargeCurrent() = 0x0100H 172 256 340 mA
–33% 33%
ChargeCurrent() = 0x0080H 64 128 192 mA
–50% 50%
INPUT CURRENT REGULATION
VIREG_DPM_RNG Input current regulation differential voltage VIREG_DPM = VACP – VACN 0 80.64 mV
IDPM_REG_ACC Input current regulation accuracy
10-mΩ current-sensing resistor
InputCurrent() = 0x1000H 3973 4096 4219 mA
–3% 3%
InputCurrent() = 0x0800H 1946 2048 2150 mA
–5% 5%
InputCurrent() = 0x0400H 870 1024 1178 mA
–15% 15%
InputCurrent() = 0x0200H 384 512 640 mA
–25% 25%
INPUT CURRENT OR CHARGE CURRENT-SENSE AMPLIFIER
VACP/N_OP Input common mode Voltage on ACP/ACN 4.5 24 V
VSRP/N_OP Output common mode Voltage on SRP/SRN 0 19.2 V
VIOUT IOUT output voltage 0 1.6 V
IIOUT IOUT output current 0 1 mA
AIOUT Current-sense amplifier gain V(ICOUT)/V(SRP-SRN) or V(ACP-ACN) 20 V/V
VIOUT_ACC Current-sense output accuracy V(SRP-SRN) or V(ACP-ACN) = 40.96 mV –2% 2%
V(SRP-SRN) or V(ACP-ACN) = 20.48 mV –4% 4%
V(SRP-SRN) or V(ACP-ACN) = 10.24 mV –15% 15%
V(SRP-SRN) or V(ACP-ACN) = 5.12 mV –20% 20%
V(SRP-SRN) or V(ACP-ACN) = 2.56 mV –33% 33%
V(SRP-SRN) or V(ACP-ACN) = 1.28 mV –50% 50%
CIOUT_MAX Maximum output load capacitance For stability with 0- to 1-mA load 100 pF
REGN REGULATOR
VREGN_REG REGN regulator voltage VVCC > 6.5 V, VACDET > 0. 6V (0-55 mA load) 5.5 6 6.5 V
IREGN_LIM REGN current limit VREGN = 0 V, VVCC > UVLO charge enabled and not in TSHUT 65 80 mA
IREGN_LIM_TSHUT VREGN = 0 V, VVCC > UVLO charge disabled or in TSHUT 7 16
CREGN REGN output capacitor required for stability ILOAD = 100 µA to 65 mA 1 µF
INPUT UNDERVOLTAGE LOCKOUT COMPARATOR (UVLO)
VUVLO Input undervoltage rising threshold VVCC rising 3.5 3.75 4 V
VUVLO_HYS Input undervoltage falling hysteresis VVCC falling 340 mV
FAST DPM COMPARATOR (FAST_DPM)
VFAST_DPM Fast DPM comparator stop charging rising threshold with respect to input current limit, voltage across input sense resistor rising edge (specified by design) 108%
QUIESCENT CURRENT
IBAT Total battery leakage current to ISRN + ISRP +IPHASE + IVCC + IACP + IACN VVCC < VBAT = 16.8 V, TJ = 0 to 85°C 15 µA
ISTANDBY Standby quiescent current, IVCC + IACP + IACN VVCC > VUVLO, VACDET > 0.6 V, charge disabled,
TJ = 0 to 85°C
0.5 1 mA
IAC_NOSW Adapter bias current during charge,
IVCC + IACP + IACN
VVCC > VUVLO, VACDET > 2.4 V,
charge enabled, no switching, TJ = 0 to 85°C
1.5 3 mA
IAC_SW Adapter bias current during charge,
IVCC + IACP + IACN
VVCC > VUVLO, VACDET > 2.4 V,
charge enabled, switching, MOSFET Sis412DN
10 mA
ACOK COMPARATOR
VACOK_FALL ACOK falling threshold VVCC>VUVLO, VACDET rising 2.376 2.4 2.424 V
VACOK_RISE_HYS ACOK rising hysteresis VVCC>VUVLO, VACDET falling 35 55 75 mV
VWAKEUP_RISE WAKEUP detect rising threshold VVCC>VUVLO, VACDET rising 0.57 0.8 V
VWAKEUP_FALL WAKEUP detect falling threshold VVCC>VUVLO, VACDET falling 0.3 0.51 V
VCC to SRN COMPARATOR (VCC_SRN)
VVCC-SRN_FALL VCC-SRN falling threshold VVCC falling towards VSRN 70 125 180 mV
VVCC-SRN _RHYS VCC-SRN rising hysteresis VVCC rising above VSRN 70 120 170 mV
HIGH-SIDE IFAULT COMPARATOR (IFAULT_HI)(1)
VIFAULT_HI_RISE ACP to PHASE rising threshold ChargeOption() bit [8:7] = 00 200 300 450 mV
ChargeOption() bit [8:7] = 01 330 500 700
ChargeOption() bit [8:7] = 10 (default) 450 700 1000
ChargeOption() bit [8:7] = 11 600 900 1250
LOW-SIDE IFAULT COMPARATOR (IFAULT_LOW)
VIFAULT_LOW_RISE PHASE to GND rising threshold 40 110 160 mV
INPUT OVERCURRENT COMPARATOR (ACOC)(1)
VACOC Adapter overcurrent rising threshold with respect to input current limit, voltage across input sense resistor rising edge ChargeOption() bit [2:1] = 01 120% 133% 145%
ChargeOption() bit [2:1] = 10 (default) 150% 166% 180%
ChargeOption() bit [2:1] = 11 200% 222% 240%
VACOC_min Min ACOC threshold clamp voltage ChargeOption() bit [2:1] = 01 (133%),
InputCurrent() = 0x0400H (10.24mV)
40 45 50 mV
VACOC_max Max ACOC threshold clamp voltage ChargeOption() bit [2:1] = 11 (222%),
InputCurrent() = 0x1F80H (80.64mV)
140 150 160 mV
tACOC_DEG ACOC deglitch time (specified by design) Voltage across input sense resistor rising to disable charge 1.7 2.5 3.3 ms
BAT OVERVOLTAGE COMPARATOR (BAT_OVP)
VOVP_RISE Overvoltage rising threshold as percentage of VBAT_REG VSRN rising 103% 104% 106%
VOVP_FALL Overvoltage falling threshold as percentage of VBAT_REG VSRN falling 102%
CHARGE OVERCURRENT COMPARATOR (CHG_OCP)
VOCP_RISE Charge overcurrent rising threshold, measure voltage drop across current-sensing resistor ChargeCurrent() = 0x0xxxH 54 60 66 mV
ChargeCurrent() = 0x1000H – 0x17C0H 80 90 100 mV
ChargeCurrent() = 0x1800 H– 0x1FC0H 110 120 130 mV
CHARGE UNDERCURRENT COMPARATOR (CHG_UCP)
VUCP_FALL Charge undercurrent falling threshold VSRP falling towards VSRN 1 5 9 mV
LIGHT LOAD COMPARATOR (LIGHT_LOAD)
VLL_FALL Light load falling threshold Measure voltage drop across current-sensing resistor 1.25 mV
VLL_RISE_HYST Light load rising hysteresis Measure voltage drop across current-sensing resistor 1.25 mV
BATTERY LOWV COMPARATOR (BAT_LOWV)
VBATLV_FALL Battery LOWV falling threshold VSRN falling 2.4 2.5 2.6 V
VBATLV_RHYST Battery LOWV rising hysteresis VSRN rising 200 mV
IBATLV Battery LOWV charge current limit 10-mΩ current sensing resistor 0.5 A
THERMAL SHUTDOWN COMPARATOR (TSHUT)
TSHUT Thermal shutdown rising temperature Temperature rising 155 °C
TSHUT_HYS Thermal shutdown hysteresis, falling Temperature falling 20 °C
ILIM COMPARATOR
VILIM_FALL ILIM as CE falling threshold VILIM falling 60 75 90 mV
VILIM_RISE ILIM as CE rising threshold VILIM rising 90 105 120 mV
LOGIC INPUT (SDA, SCL)
VIN_ LO Input low threshold 0.8 V
VIN_ HI Input high threshold 2.1 V
IIN_ LEAK Input bias current V = 7 V –1 1 μA
LOGIC OUTPUT OPEN DRAIN (ACOK, SDA, IFAULT, CMPOUT)
VOUT_ LO Output saturation voltage 5-mA drain current 500 mV
IOUT_ LEAK Leakage current V = 7 V –1 1 μA
ANALOG INPUT (ACDET, ILIM)
IIN_ LEAK Input bias current V = 7 V –1 1 μA
ANALOG INPUT (CMPIN has 50-kΩ series resistor and 2000-kΩ pulldown resistor)
IIN_LEAK Input bias current V = 7 V 1 3.5 7 μA
PWM OSCILLATOR
FSW PWM switching frequency ChargeOption() bit [9] = 0 (default) 600 750 900 kHz
FSW+ PWM increase frequency ChargeOption() bit [10:9] = 11 665 885 1100 kHz
FSW– PWM decrease frequency ChargeOption() bit [10:9] = 01 465 615 765 kHz
PWM HIGH-SIDE DRIVER (HIDRV)
RDS_HI_ON High-side driver (HSD) turnon resistance VBTST – VPH = 5.5 V, I = 10mA 12 20 Ω
RDS_HI_OFF High-side driver turnoff resistance VBTST – VPH = 5.5 V, I = 10mA 0.65 1.3 Ω
VBTST_REFRESH Bootstrap refresh comparator threshold voltage VBTST – VPH when low-side refresh pulse is requested 3.85 4.3 4.7 V
PWM LOW-SIDE DRIVER (LODRV)
RDS_LO_ON Low side driver (LSD) turnon resistance VREGN = 6 V, I = 10 mA 15 25 Ω
RDS_LO_OFF Low side driver turnoff resistance VREGN = 6 V, I = 10 mA 0.9 1.4 Ω
INTERNAL SOFT-START
ISTEP Soft-start step size In CCM mode, 10-mΩ current-sense resistor 64 mA
INDEPENDENT COMPARATOR (1)
VIC_REF1 Comparator reference ChargeOption() bit [4] = 0, rising edge (default) 0.585 0.6 0.615 V
VIC_REF2 Comparator reference ChargeOption() bit [4] = 1, rising edge 2.375 2.4 2.425 V
RS Series resistor 50
RDOWN Pulldown resistor 2000
(1) User can adjust threshold through SMBus ChargeOption() REG0x12.

7.6 Timing Requirements

MIN NOM MAX UNIT
ACOK COMPARATOR
tACOK_FALL_DEG ACOK falling deglitch (specified by design) VVCC>VUVLO, VACDET rising above 2.4 V,
ChargeOption() bit [15] = 0 (default), (bq24707 only)
0.9 1.3 1.7 s
VVCC>VUVLO, VACDET rising above 2.4 V,
ChargeOption() bit [15] = 0 (default), (bq24707A only)
0.8 1.2 2 ms
VVCC>VUVLO, VACDET rising above 2.4 V,
ChargeOption() bit [15] = 1
10 50 μs
PWM DRIVER
tLOW_HIGH Driver dead time from low side to high side 20 ns
tHIGH_LOW Driver dead time from high side to low side 20 ns
INTERNAL SOFT-START
tSTEP Soft-start step time In CCM mode, 10-mΩ current-sense resistor 240 μs
SMBus
tR SCLK/SDATA rise time 1 μs
tF SCLK/SDATA fall time 300 ns
tW(H) SCLK pulse width high 4 50 μs
tW(L) SCLK pulse width low 4.7 μs
tSU(STA) Setup time for START condition 4.7 μs
tH(STA) START condition hold time after which first clock pulse is generated 4 μs
tSU(DAT) Data setup time 250 ns
tH(DAT) Data hold time 300 ns
tSU(STOP) Setup time for STOP condition 4 µs
t(BUF) Bus free time between START and STOP condition 4.7 μs
FS(CL) Clock frequency 10 100 kHz
HOST COMMUNICATION FAILURE
ttimeout SMBus bus release time-out(1) 25 35 ms
tBOOT Deglitch for watchdog reset signal 10 ms
tWDI Watchdog time-out period, ChargeOption()
bit [14:13] = 01(2)
35 44 53 s
tWDI Watchdog time-out period, ChargeOption()
bit [14:13] = 10(2)
70 88 105 s
tWDI Watchdog time-out period, ChargeOption()
bit [14:13] = 11(2) (default)
140 175 210 s
(1) Devices participating in a transfer time-out when any clock low exceeds the 25-ms minimum time-out period. Devices that have detected a time-out condition must reset the communication no later than the 35-ms maximum time-out period. Both a master and a slave must adhere to the maximum value specified as it incorporates the cumulative stretch limit for both a master (10 ms) and a slave (25 ms).
(2) User can adjust threshold through SMBus ChargeOption() REG0x12.
bq24707 bq24707A SMBus_tim_lusa79.gifFigure 1. SMBus Communication Timing Waveforms

7.7 Typical Characteristics

Table 1. Table of Graphs

FIGURE
VCC, ACDET, REGN and ACOK Power Up (bq24707) Figure 2
Charge Enable by ILIM Figure 3
Current Soft-Start Figure 4
Charge Disable by ILIM Figure 5
Continuous Conduction Mode Switching Waveforms Figure 6
Cycle-by-Cycle Synchronous to Nonsynchronous Figure 7
100% Duty and Refresh Pulse Figure 8
System Load Transient (Input DPM) Figure 9
Battery Insertion Figure 18
Battery-to-Ground Short Protection Figure 10
Battery-to-Ground Short Transition Figure 11
Efficiency vs Output Current Figure 19
bq24707 bq24707A tc1_lusa78.gif
CH1: VCC, 10 V/div; CH2: ACDET, 2 V/div; CH3: ACOK, 5 V/div; CH4: REGN, 5 V/div, 200 ms/div
Figure 2. VCC, ACDET, REGN and ACOK Power Up (bq24707)
bq24707 bq24707A tc3_lusa78.gif
CH1: PHASE, 10 V/div; CH2: Vin, 10 V/div; CH3: LODRV, 5 V/div; CH4: inductor current, 2 A/div, 2 ms/div
Figure 4. Current Soft-Start
bq24707 bq24707A tc5_lusa78.gif
CH1: HIDRV, 10 V/div; CH2: LODRV, 5 V/div; CH3: PHASE,
10 V/div; CH4: inductor current, 2 A/div, 400 ns/div
Figure 6. Continuous Conduction Mode Switching Waveforms
bq24707 bq24707A tc7_lusa78.gif
CH1: PHASE, 10 V/div; CH2: LODRV, 5 V/div;
CH4: inductor current, 2 A/div, 4 µs/div
Figure 8. 100% Duty and Refresh Pulse
bq24707 bq24707A tc10_lusa78.gif
CH1: PHASE, 20 V/div; CH2: LODRV, 10 V/div; CH3: battery voltage, 5 V/div; CH4: inductor current, 2 A/div, 2 ms/div
Figure 10. Battery-to-Ground Short Protection
bq24707 bq24707A tc2_lusa78.gif
CH2: ILIM, 1 V/div; CH4: inductor current, 1 A/div, 10 ms/div
Figure 3. Charge Enable by ILIM
bq24707 bq24707A tc4_lusa78.gif
CH2: ILIM, 1 V/div; CH4: inductor current, 1 A/div, 4 µs/div
Figure 5. Charge Disable by ILIM
bq24707 bq24707A tc6A_lusa78.gif
CH1: HIDRV, 10 V/div; CH2: LODRV, 5 V/div; CH3: PHASE,
10 V/div; CH4: inductor current, 1 A/div, 400 ns/div
Figure 7. Cycle-by-Cycle Synchronous to Nonsynchronous
bq24707 bq24707A tc8_lusa78.gif
CH2: battery current, 2 A/div; CH3: adapter current, 2 A/div;
CH4: system load current, 2 A/div, 100 µs/div
Figure 9. System Load Transient (Input DPM)
bq24707 bq24707A tc11_lusa78.gif
CH1: PHASE, 20 V/div; CH2: LODRV, 10 V/div; CH3: battery voltage, 5 V/div; CH4: inductor current, 2 A/div, 4 µs/div
Figure 11. Battery-to-Ground Short Transition