SLUSBB8A December   2012  – June 2016

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Tables
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 A Brief Description of the Wireless System
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Qi Wireless Power System and bq51010B Power Transfer Flow Diagrams
      2. 8.3.2  Dynamic Rectifier Control
      3. 8.3.3  Dynamic Efficiency Scaling
      4. 8.3.4  RILIM Calculations
      5. 8.3.5  Input Overvoltage
      6. 8.3.6  Adapter Enable Functionality and EN1 or EN2 Control
      7. 8.3.7  End Power Transfer Packet (WPC Header 0x02)
      8. 8.3.8  Status Outputs
      9. 8.3.9  WPC Communication Scheme
      10. 8.3.10 Communication Modulator
      11. 8.3.11 Adaptive Communication Limit
      12. 8.3.12 Synchronous Rectification
      13. 8.3.13 Temperature Sense Resistor Network (TS)
      14. 8.3.14 3-State Driver Recommendations For the TS-CTRL Pin
      15. 8.3.15 Thermal Protection
      16. 8.3.16 WPC 1.1 Compliance - Foreign Object Detection
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 bq51010B Wireless Power Receiver Used as a Power Supply
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Using the bq51010B as a Wireless Power Supply
          2. 9.2.1.2.2 Series and Parallel Resonant Capacitor Selection
          3. 9.2.1.2.3 COMM, CLAMP, and BOOT Capacitors
          4. 9.2.1.2.4 Control Pins and WPG
          5. 9.2.1.2.5 Current Limit and FOD
          6. 9.2.1.2.6 RECT and OUT Capacitance
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Dual Power Path: Wireless Power and DC Input
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Wireless and Direct Charging of a Li-Ion Battery at 800 mA
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Input voltage AC1, AC2 –0.8 20 V
RECT, COM1, COM2, OUT, WPG, CLAMP1, CLAMP2 –0.3 20
AD, AD-EN –0.3 30
BOOT1, BOOT2 –0.3 26
EN1, EN2, TERM, FOD, TS-CTRL, ILIM –0.3 7
Input current AC1, AC2 1.5 A(RMS)
Output current OUT 750 mA
Output sink current WPG 15 mA
COM1, COM2 1 A
Junction temperature, TJ –40 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to the VSS terminal, unless otherwise noted.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VRECT Voltage range RECT 4 10 V
IRECT Current through internal rectifier RECT 1 A
IOUT Output current OUT 750 mA
IAD-EN Sink current AD-EN 1 mA
ICOMM COMM sink current COMM 400 mA
TJ Junction temperature 0 125 °C

7.4 Thermal Information

THERMAL METRIC (1) bq51010B UNIT
YFP (DSBGA)
28 PINS
RθJA Junction-to-ambient thermal resistance 58.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.2 °C/W
RθJB Junction-to-board thermal resistance 9.1 °C/W
ψJT Junction-to-top characterization parameter 1.4 °C/W
ψJB Junction-to-board characterization parameter 8.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

over operating free-air temperature range, 0°C to 125°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
UVLO Undervoltage lockout VRECT = 0 V to 3 V 2.6 2.7 2.8 V
VHYS Hysteresis on UVLO VRECT = 3 V to 2 V 250 mV
Hysteresis on OVP VRECT = 16 V to 5 V 150
VRECT Input overvoltage threshold VRECT = 5 V to 16 V 14.5 15 15.5 V
VRECT-REG Dynamic VRECT threshold 1 ILOAD < 0.1 × IIMAX (ILOAD rising) 9.08 V
Dynamic VRECT threshold 2 0.1 × IIMAX < ILOAD < 0.2 × IIMAX
(ILOAD rising)
8.28
Dynamic VRECT threshold 3 0.2 × IIMAX < ILOAD < 0.4 × IIMAX
(ILOAD rising)
7.53
Dynamic VRECT threshold 4 ILOAD > 0.4 × IIMAX (ILOAD rising) 7.11
VRECT tracking In current limit voltage above VOUT VO + 0.25
ILOAD ILOAD hysteresis for dynamic VRECT thresholds as a percentage of IILIM ILOAD falling 4%
VRECT-DPM Rectifier undervoltage protection, restricts IOUT at VRECT-DPM 3 3.1 3.2 V
VRECT-REV Rectifier reverse voltage protection at the output VRECT-REV = VOUT – VRECT,
VOUT = 10 V
8 9 V
QUIESCENT CURRENT
IRECT Active chip quiescent current consumption from RECT ILOAD = 0 mA, 0°C ≤ TJ ≤ 85°C 8 10 mA
ILOAD = 300 mA,
0°C ≤ TJ ≤ 85°C
2 3
IOUT Quiescent current at the output when wireless power is disabled (standby) VOUT = 7 V, 0°C ≤ TJ ≤ 85°C 28 40 µA
ILIM SHORT CIRCUIT
RILIM Highest value of ILIM resistor considered a fault (short). Monitored for IOUT > 100 mA RILIM = 200 Ω to 50 Ω. IOUT latches off, cycle power to reset 120 Ω
tDGL Deglitch time transition from ILIM short to IOUT disable 1 ms
ILIM_SC ILIM-SHORT,OK enables the ILIM short comparator when IOUT is greater than this value ILOAD = 0 mA to 200 mA 110 145 165 mA
Hysteresis for ILIM-SHORT,OK comparator ILOAD = 0 mA to 200 mA 30
IOUT Maximum output current limit, CL Maximum ILOAD that is delivered for 1 ms when ILIM is shorted 2.45 A
OUTPUT
VOUT-REG Regulated output voltage ILOAD = 750 mA 6.9 6.96 7.02 V
ILOAD = 10 mA 6.9 6.95 7.05
KILIM Current programming factor for hardware protection RLIM = KILIM / IILIM, where IILIM is the hardware current limit.
IOUT = 750 mA
303 314 322
KIMAX Current programming factor for the nominal operating current IIMAX = KIMAX / RLIM, where IMAX is the maximum normal operating current. IOUT = 750 mA 262
IOUT Current limit programming range 1.5 A
ICOMM Current limit during WPC communication IOUT > 300 mA IOUT + 50 mA
IOUT < 300 mA 343 378 425
tHOLD Hold off time for the communication current limit during start-up 1 s
TS / CTRL
VTS Internal TS bias voltage ITS-Bias < 100 µA (periodically driven see tTS-CTRL) 2 2.2 2.4 V
VCOLD Rising threshold VTS = 50% to 60% 56.5% 58.7% 60.8% VTS-Bias
Falling hysteresis VTS = 60% to 50% 2%
VHOT Falling threshold VTS = 20% to 15% 18.5% 19.6% 20.7% VTS-Bias
Rising hysteresis VTS = 15% to 20% 3%
VCTRL CTRL pin threshold for a high VTS/CTRL = 50 mV to 150 mV 80 100 130 mV
CTRL pin threshold for a low VTS/CTRL = 150 mV to 50 mV 50 80 100
tTS-CTRL Time VTS-Bias is active when TS measurements occur Synchronous to the communication period 24 ms
tTS Deglitch time for all TS comparators 10 ms
RTS Pullup resistor for the NTC network. Pulled up to the voltage bias 18 20 22
THERMAL PROTECTION
TJ Thermal shutdown temperature 155 °C
Thermal shutdown hysteresis 20
OUTPUT LOGIC LEVELS ON WPG
VOL Open drain WPG pin ISINK = 5 mA 500 mV
IOFF WPG leakage current when disabled V WPG = 20 V 1 µA
COMM PIN
RDS(ON) COM1 and COM2 VRECT = 2.6 V 1.5 Ω
fCOMM Signaling frequency on COMM pin 2 Kb/s
IOFF Comm pin leakage current VCOM1 = 20 V, VCOM2 = 20 V 1 µA
CLAMP PIN
RDS(ON) Clamp1 and Clamp2 0.8 Ω
ADAPTER ENABLE
V AD-EN VAD rising threshold voltage. EN-UVLO VAD = 0 V to 5 V 3.5 3.6 3.8 V
V AD-EN hysteresis, EN-HYS VAD = 5 V to 0 V 400 mV
IAD Input leakage current VRECT = 0 V, VAD = 5 V 60 μA
RAD Pullup resistance from AD-EN to OUT when adapter mode is disabled and VOUT > VAD, EN-OUT VAD = 0 V, VOUT = 5 V 200 350 Ω
VAD Voltage difference between VAD and V AD-EN when adapter mode is enabled, EN-ON VAD = 5 V, 0°C ≤ TJ ≤ 85°C 3 4.5 5 V
SYNCHRONOUS RECTIFIER
IOUT IOUT at which the synchronous rectifier enters half-synchronous mode, SYNC_EN ILOAD = 200 mA to 0 mA 80 100 130 mA
Hysteresis for IOUT,RECT-EN (full-synchronous mode enabled) ILOAD = 0 mA to 200 mA 25
VHS-DIODE High-side diode drop when the rectifier is in half-synchronous mode IAC-VRECT = 250 mA and
TJ = 25°C
0.7 V
EN1 AND EN2
VIL Input low threshold for EN1 and EN2 0.4 V
VIH Input high threshold for EN1 and EN2 1.3 V
RPD EN1 and EN2 pull down resistance 200
ADC (WPC RELATED MEASUREMENTS AND COEFFICIENTS)
IOUT SENSE Accuracy of the current sense over the load range IOUT = 0 mA to 750 mA –1.5% 0% 0.9%

7.6 Typical Characteristics

bq51010B G001_lusbb8.gif
Figure 1. System Efficiency from DC Input to DC Output
bq51010B G003_lusbb8.gif
Figure 3. Load Current Sweep (I-V Curve)
bq51010B G005_lusbb8.gif
Figure 5. 720-mA Load Dump Full System Response
bq51010B G007_lusbb8.gif
Figure 7. TS Fault
bq51010B C001_SLUSBB8.png
Figure 9. Impact of Load Current on Rectifier Voltage
bq51010B C003_SLUSBB8.png
Figure 11. Impact of Maximum Current Setting on Rectifier Voltage
bq51010B G002_lusbb8.gif
Figure 2. VRECT vs Load Current
bq51010B G004_lusbb8.gif
Figure 4. 720-mA Load Step Full System Response
bq51010B G006_lusbb8.gif
Figure 6. Typical Start-Up With a 720-mA System Load
bq51010B G008_lusbb8.gif
Figure 8. TS Fault GND
bq51010B C002_SLUSBB8.png
Figure 10. Light Load System Efficiency Improvement Due to Dynamic Efficiency Scaling Feature