SNAS365G May   2006  – June 2016 DAC082S085

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 Feature Description
        1. 8.2.1.1 DAC Architecture
        2. 8.2.1.2 Output Amplifiers
        3. 8.2.1.3 Reference Voltage
        4. 8.2.1.4 Power-On Reset
    3. 8.3 Device Functional Modes
      1. 8.3.1 Power-Down Modes
    4. 8.4 Programming
      1. 8.4.1 Serial Interface
      2. 8.4.2 Input Shift Register
      3. 8.4.3 DSP and Microprocessor Interfacing
        1. 8.4.3.1 ADSP-2101/ADSP2103 Interfacing
        2. 8.4.3.2 80C51/80L51 Interface
        3. 8.4.3.3 68HC11 Interface
        4. 8.4.3.4 Microwire Interface
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Bipolar Operation
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Using References as Power Supplies
      1. 10.1.1 LM4130
      2. 10.1.2 LM4050
      3. 10.1.3 LP3985
      4. 10.1.4 LP2980
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
        1. 12.1.1.1 Specification Definitions
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resource
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DAC082S085 is designed for single-supply operation and thus has a unipolar output. However, a bipolar output may be obtained with the circuit in Figure 35. This circuit provides an output voltage range of ±5 V. A rail-to-rail amplifier must be used if the amplifier supplies are limited to ±5 V.

9.2 Typical Application

9.2.1 Bipolar Operation

DAC082S085 20195617.gif Figure 35. Bipolar Operation

9.2.1.1 Design Requirements

  • The DAC082S085 uses a single supply.
  • The output is required to be bipolar with a voltage range of ±5 V.
  • Dual supplies are used for the output amplifier.

9.2.1.2 Detailed Design Procedure

The output voltage of this circuit for any code is found to be

Equation 2. VO = (VA × (D / 256) × ((R1 + R2) / R1) – VA × R2 / R1)
Equation 3. VO = (10 × D / 256) – 5 V

where

  • D is the input code in decimal form (With VA = 5 V and R1 = R2)

Table 2 lists the rail-to-rail amplifiers suitable for this application.

Table 2. Some Rail-to-Rail Amplifiers

AMP PKGS  TYP VOS TYP ISUPPLY
LMC7111 8-pin PDIP, 5-pin SOT-23 0.9 mV 25 µA
LM7301 8-pin SO, 5-pin SOT-23 0.03 mV 620 µA
LM8261 5-pin SOT-23 0.7 mV 1 mA

9.2.1.3 Application Curve

DAC082S085 Application1.gif Figure 36. Bipolar Input / Output Transfer Characteristic