SBAS932 March   2024 DAC39RFS10-SEP

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - AC Specifications
    7. 6.7  Electrical Characteristics - Power Consumption
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 SPI and FRI Timing Diagrams
    11. 6.11 Typical Characteristics: Bandwidth and DC Linearity
    12. 6.12 Typical Characteristics: Single Tone Spectra
    13. 6.13 Typical Characteristics: Dual Tone Spectra
    14. 6.14 Typical Characteristics: Noise Spectral Density
    15. 6.15 Typical Characteristics: Power Dissipation and Supply Currents
    16. 6.16 Typical Characteristics: Linearity Sweeps
    17. 6.17 Typical Characteristics: Modulated Waveforms
    18. 6.18 Typical Characteristics: Phase and Amplitude Noise
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 DAC Output Modes
        1. 7.3.1.1 NRZ Mode
        2. 7.3.1.2 RTZ Mode
        3. 7.3.1.3 RF Mode
        4. 7.3.1.4 DES Mode
      2. 7.3.2 DAC Core
        1. 7.3.2.1 DAC Output Structure
        2. 7.3.2.2 Full-Scale Current Adjustment
      3. 7.3.3 DEM and Dither
      4. 7.3.4 Offset Adjustment
      5. 7.3.5 Clocking Subsystem
        1. 7.3.5.1 SYSREF Frequency Requirements
        2. 7.3.5.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
      6. 7.3.6 Digital Signal Processing Blocks
        1. 7.3.6.1 Digital Upconverter (DUC)
          1. 7.3.6.1.1 Interpolation Filters
          2. 7.3.6.1.2 Numerically Controlled Oscillator (NCO)
            1. 7.3.6.1.2.1 Phase-Continuous NCO Update Mode
            2. 7.3.6.1.2.2 Phase-coherent NCO Update Mode
            3. 7.3.6.1.2.3 Phase-sync NCO Update Mode
            4. 7.3.6.1.2.4 NCO Synchronization
              1. 7.3.6.1.2.4.1 JESD204C LSB Synchonization
            5. 7.3.6.1.2.5 NCO Mode Programming
          3. 7.3.6.1.3 Mixer Scaling
        2. 7.3.6.2 Channel Bonder
        3. 7.3.6.3 DES Interpolator
      7. 7.3.7 JESD204C Interface
        1. 7.3.7.1  Deviation from JESD204C Standard
        2. 7.3.7.2  Transport Layer
        3. 7.3.7.3  Scrambler and Descrambler
        4. 7.3.7.4  Link Layer
        5. 7.3.7.5  Physical Layer
        6. 7.3.7.6  Serdes PLL Control
        7. 7.3.7.7  Serdes Crossbar
        8. 7.3.7.8  Multi-Device Synchronization and Deterministic Latency
          1. 7.3.7.8.1 Programming RBD
        9. 7.3.7.9  Operation in Subclass 0 Systems
        10. 7.3.7.10 Link Reset
      8. 7.3.8 Alarm Generation
    4. 7.4 Device Functional Modes
      1. 7.4.1 DUC and DDS Modes
      2. 7.4.2 JESD204C Interface Modes
        1. 7.4.2.1 JESD204C Interface Modes
        2. 7.4.2.2 JESD204C Format Diagrams
          1. 7.4.2.2.1 16-bit Formats
          2. 7.4.2.2.2 12-bit Formats
          3. 7.4.2.2.3 8-bit Formats
      3. 7.4.3 NCO Synchronization Latency
      4. 7.4.4 Data Path Latency
    5. 7.5 Programming
      1. 7.5.1 Using the Standard SPI Interface
        1. 7.5.1.1 SCS
        2. 7.5.1.2 SCLK
        3. 7.5.1.3 SDI
        4. 7.5.1.4 SDO
        5. 7.5.1.5 Serial Interface Protocol
        6. 7.5.1.6 Streaming Mode
      2. 7.5.2 Using the Fast Reconfiguration Interface
      3. 7.5.3 SPI Register Map
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Startup Procedure for DUC/Bypass Mode
      2. 8.1.2 Startup Procedure for DDS Mode
      3. 8.1.3 Understanding Dual Edge Sampling Modes
      4. 8.1.4 Eye Scan Procedure
      5. 8.1.5 Pre/Post Cursor Analysis Procedure
      6. 8.1.6 Sleep and Disable Modes
      7. 8.1.7 Radiation Environment Recommendations
        1. 8.1.7.1 SPI Programming
        2. 8.1.7.2 JESD204C Reliability
        3. 8.1.7.3 NCO Reliability
          1. 8.1.7.3.1 NCO Frequency and Phase Correction (Strategy #1)
          2. 8.1.7.3.2 NCO Frequency Correction (Strategy No. 2)
    2. 8.2 Typical Application
      1. 8.2.1 S-Band Radar Transmitter
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
      4. 8.2.4 Detailed Clocking Subsystem Design Procedure
        1. 8.2.4.1 Example 1: SWAP-C Optimized
        2. 8.2.4.2 Example 2: Improved Phase Noise LMX2820 with External VCO
        3. 8.2.4.3 Example 3: Discrete Analog PLL for Best DAC Performance
        4. 8.2.4.4 10GHz Clock Generation
      5. 8.2.5 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power Up and Down Sequence
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines and Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

Figure 5-1 FCBGA Package, 256-Ball Flip Chip BGA with 1mm pitch, Top View
Table 5-1 Pin Functions
PINTYPEDESCRIPTION
NAMENO.
DAC Outputs
DACOUTA-A13ODAC channel A analog output negative terminal. Output voltage must comply with DAC compliance voltage to maintain specified performance.
DACOUTA+A12ODAC channel A analog output positive terminal. Output voltage must comply with DAC compliance voltage to maintain specified performance.
DACOUTB-T13ODAC channel B analog output negative terminal. Output voltage must comply with DAC compliance voltage to maintain specified performance. Not available in single channel devices.
DACOUTB+T12ODAC channel B analog output positive terminal. Output voltage must comply with DAC compliance voltage to maintain specified performance. Not available in single channel devices.
Differential Clock and SYSREF Inputs
CLK-E16IDevice clock input negative terminal. There is an internal 100Ω differential termination between CLK+ and CLK–. This input is self-biased and should be AC coupled to the clock source.
CLK+D16IDevice clock input positive terminal. There is an internal 100Ω differential termination between CLK+ and CLK–. This input is self-biased and should be AC coupled to the clock source.
SYSREF-N16IDifferential JESD204C SYSREF input negative terminal. There is an internal 100Ω differential termination between SYSREF+ and SYSREF–.
SYSREF+M16IDifferential JESD204C SYSREF input negative terminal. There is an internal 100Ω differential termination between SYSREF+ and SYSREF–.
SerDes Interface
0SRX-A7ISerdes Lane 0 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 0SRX+.
0SRX+A8ISerdes Lane 0 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 0SRX-.
1SRX-B7ISerdes Lane 1 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 1SRX+.
1SRX+B8ISerdes Lane 1 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 1SRX-.
2SRX-A4ISerdes Lane 2 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 2SRX+.
2SRX+A5ISerdes Lane 2 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 2SRX-.
3SRX-B4ISerdes Lane 3 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 3SRX+.
3SRX+B5ISerdes Lane 3 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 3SRX-.
4SRX-D1ISerdes Lane 4 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 4SRX+.
4SRX+C1ISerdes Lane 4 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 4SRX-.
5SRX-D2ISerdes Lane 5 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 5SRX+.
5SRX+C2ISerdes Lane 5 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 5SRX-.
6SRX-G1ISerdes Lane 6 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 6SRX+.
6SRX+F1ISerdes Lane 6 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 6SRX-.
7SRX-G2ISerdes Lane 7 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 7SRX+.
7SRX+F2ISerdes Lane 7 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 7SRX-.
8SRX-T8ISerdes Lane 8 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 8SRX+.
8SRX+T7ISerdes Lane 8 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 8SRX-.
9SRX-R8ISerdes Lane 9 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 9SRX+.
9SRX+R7ISerdes Lane 9 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 9SRX-.
10SRX-T5ISerdes Lane 10 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 10SRX+.
10SRX+T4ISerdes Lane 10 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 10SRX-.
11SRX-R5ISerdes Lane 11 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 11SRX+.
11SRX+R4ISerdes Lane 11 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 11SRX-.
12SRX-P1ISerdes Lane 12 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 12SRX+.
12SRX+N1ISerdes Lane 12 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 12SRX-.
13SRX-P2ISerdes Lane 13 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 13SRX+.
13SRX+N2ISerdes Lane 13 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 13SRX-.
14SRX-L1ISerdes Lane 14 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 14SRX+.
14SRX+K1ISerdes Lane 14 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 14SRX-.
15SRX-L2ISerdes Lane 15 negative input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 15SRX+.
15SRX+K2ISerdes Lane 15 positive input. Includes in package AC-coupling series capacitor and 100Ω internal termination to 15SRX-.
GPIO Functions
ALARMH4OALARM pin is asserted when an internal unmasked alarm is detected. Alarm mask is set by ALM_MASK register.
FRCLKF4IFast reconfiguration interface clock.
FRCSG4IFast reconfiguration interface chip select. Internal pullup.
FRDI0E4IFast reconfiguration interface data bit 0.
FRDI1E5IFast reconfiguration interface data bit 1.
FRDI2F5IFast reconfiguration interface data bit 2.
FRDI3G5IFast reconfiguration interface data bit 3.
RESETD6IDevice reset input, active low. Must be toggled after power up. Internal pullup.
SCANENE6ITI use only, can be left unconnected. Internal pulldown.
SCLKE8ISerial programming interface (SPI) clock input.
SCSE7ISerial programming interface (SPI) device select input, active low. Internal pullup.
SDID8ISerial programming interface (SPI) data input.
SDOD7OSerial programming interface (SPI) data output. High impedance when not reading out SPI data.
SYNCJ4OJESD204C SYNC output, active low.
TXEN0D5ITransmit enable for channel A active high input. This pin must be enabled using register USE_TX_EN0. The DAC output is forced to midcode (0x0000 in 2's complement) when transmission is disabled. Internal pullup.
TXEN1D4ITransmit enable for channel B active high input. This pin must be enabled using register USE_TX_EN1. The DAC output is forced to midcode (0x0000 in 2's complement) when transmission is disabled. Internal pullup.
Analog functions
ATESTN6OAnalog test pin for TI use. Should be left disconnected.
EXTREFJ15I/OReference voltage output or input, determined by the EXTREF_EN register field. If the internal reference is used, the ball should be tied through 0.1uF to AGND.
RBIAS-H16OFull-scale output current bias is set by the resistor tied from this terminal to RBIAS+.
RBIAS+J16OFull-scale output current bias is set by the resistor tied from this terminal to RBIAS-.
RTESTM5OTI use only. Tie to AGND.
Power Supplies
VDDA18AG14 H14I1.8V supply voltage for DAC channel A. Can be combined with VDDA18B, but may degrade channel-to-channel crosstalk (XTALK).
VDDA18BJ14 K14I1.8V supply voltage for DAC channel B. Can be combined with VDDA18A, but may degrade channel-to-channel crosstalk (XTALK).
VDDCLK10F11 H11 J11 L11 E12 M12I1V supply voltage for internal sampling clock distribution path. Noise or spurs on this supply may degrade phase noise performance. Recommended to separate from VDDDIG and VDDA for best performance.
VDDCLK18H12 H13I1.8V supply voltage for clock (CLK+/–) input buffer. Noise or spurs on this supply may degrade phase noise performance.
VDDDIGF7 H7 J7 L7 N7 G8 K8 M8I1V supply voltage for digital block. Recommended to separate from VDDA and VDDCLK for best performance.
VDDEAF8 F9I1V supply voltage for channel A DAC encoder. Recommended to separate from VDDDIG for best performance. Can be combined with VDDEB.
VDDEBL8 L9I1V supply voltage for channel B DAC encoder. Recommended to separate from VDDDIG for best performance. Can be combined with VDDEA.
VDDIOD9 E9I1.8V supply for CMOS input and output terminals.
VDDLAF10 H10I1V supply for DAC analog latch for channel A. Separate from VDDLB for best channel-to-channel crosstalk (XTALK). Must be separated from VDDDIG for best performance.
VDDLBJ10 L10I1V supply for DAC analog latch for channel B. Separate from VDDLA for best channel-to-channel crosstalk (XTALK). Must be separated from VDDDIG for best performance.
VDDR18K4 L4 M4 N4I1.8V Supply voltage for SerDes receivers.
VDDSYS18J12 J13I1.8V supply voltage for SYSREF (SYSREF+/–) input buffer. Can be combined with VDDCLK18 when SYSREF is disabled during normal operation. This supply should be separate from VDDCLK18 when SYSREF is run continuously during operation to avoid noise and spur coupling and reduced phase noise performance.
VDDTC3 D3 F3 G3 K3 L3 N3 P3 C4 P4 C5 H5 J5 P5 G6 K6 M6 C7 P7 C8 P8I1V Supply voltage for SerDes termination.
VEEAM18C11 D11 C12 D12 C13 D13I–1.8V supply voltage for DAC current source bias for channel A. Can be combined with VEEBM18, but may degrade channel-to-channel crosstalk (XTALK).
VEEBM18N11 P11 N12 P12 N13 P13I–1.8V supply voltage for DAC current source bias for channel B. Can be combined with VEEAM18, but may degrade channel-to-channel crosstalk (XTALK).
VQPSN9 P9ITI use only. Can be tied to DGND during normal operation.
Grounds
AGNDA10 B10 C10 D10 N10 P10 R10 T10 A11 B11 R11 T11 B12 R12 B13 G13 K13 R13 A14 B14 C14 D14 N14 P14 R14 T14 G15 H15 K15 G16 K16-Analog ground.
DGNDA1 B1 E1 H1 J1 M1 R1 T1 A2 B2 E2 H2 J2 M2 R2 T2 A3 B3 E3 H3 J3 M3 R3 T3 K5 L5 N5 A6 B6 C6 F6 H6 J6 L6 P6 R6 T6 G7 K7 M7 H8 J8 N8 A9 B9 C9 G9 H9 J9 K9 M9 R9 T9-Digital ground.
VSSCLKE10 G10 K10 M10 E11 G11 K11 M11 F12 G12 K12 L12 E13 F13 L13 M13 E14 F14 L14 M14 A15 B15 C15 D15 E15 F15 L15 M15 N15 P15 R15 T15 A16 B16 C16 F16 L16 P16 R16 T16-Clock ground.