SNVSAN5A July   2017  – October 2017 LM36011

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Flash Mode
      2. 7.3.2 Torch Mode
      3. 7.3.3 IR Mode
    4. 7.4 Device Functioning Modes
      1. 7.4.1 Start-Up (Enabling The Device)
      2. 7.4.2 Input Voltage Flash Monitor (IVFM)
      3. 7.4.3 Fault/Protections
        1. 7.4.3.1 Input Voltage Flash Monitor (IVFM)
        2. 7.4.3.2 LED Short Fault
        3. 7.4.3.3 Thermal Scale-Back (TSB)
        4. 7.4.3.4 Thermal Shutdown (TSD)
        5. 7.4.3.5 Undervoltage Lockout (UVLO)
        6. 7.4.3.6 Flash Time-out (FTO)
    5. 7.5 Programming
      1. 7.5.1 Control Truth Table
      2. 7.5.2 I2C-Compatible Interface
        1. 7.5.2.1 Data Validity
        2. 7.5.2.2 Start and Stop Conditions
        3. 7.5.2.3 Transferring Data
        4. 7.5.2.4 I2C-Compatible Chip Address
    6. 7.6 Register Descriptions
      1. 7.6.1 Enable Register (0x01)
      2. 7.6.2 Configuration Register (0x02)
      3. 7.6.3 LED Flash Brightness Register (0x03)
      4. 7.6.4 LED Torch Brightness Register (0x04)
      5. 7.6.5 Flags Register (0x05)
      6. 7.6.6 Device ID and RESET Register (0x06)
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Thermal Performance
        2. 8.2.2.2 Input Capacitor Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YKB|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Applications and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The LM36011 can drive a flash LED at currents up to 1.5 A. .

Typical Application

LM36011 typicalappsource.gif Figure 24. LM36011 Typical Application

Design Requirements

Example requirements based on default register values:

Table 1. Design Parameters

DESIGN PARAMETER EXAMPLE VALUE
Input voltage range 2.5 V to 5.5 V
Brightness control I2C Register
LED configuration 1 flash LED
Flash brightness 1.5-A maximum current

Detailed Design Procedure

Thermal Performance

Output power is limited by two things: the ambient temperature, and the maximum power dissipation in the package. If the die temperature of the device is below the absolute maximum rating of 125°C, the maximum output power can be over 6 W. However, any appreciable output current causes the internal power dissipation to increase and therefore increase the die temperature. Any circuit configuration must ensure that the die temperature remains below 125°C taking into account the ambient temperature derating. The thermal scale-back protection (TSB) helps ensure that temperature requirement is held valid. If the TSB feature is disabled, thermal shutdown (TSD) is the next level of protection for the device, which is set to 150°C. This mechanism cannot be disabled, and operation of the device above 125°C is not ensured by the electrical specification.

The device power dissipation equals:

Equation 1. LM36011 pdiss_011.gif

Use Equation 2 to calculate the junction temperature (TJ) of the device:

Equation 2. LM36011 TJ.gif

Note that these equations only provide approximation of the junction temperature and do not take into account thermal time constants, which play a large role in determining maximum deliverable output power and flash durations.

Input Capacitor Selection

Choosing the correct size and type of input capacitor helps minimize noise on the input pin of the boost converter that can feed through and disrupt internal analog signals. In the typical application circuit a 10-µF ceramic input capacitor works well. It is important to place the input capacitor as close as possible to the LM36011 input (IN) pin. This reduces the series resistance and inductance that can inject noise into the device. Table 2 lists various input capacitors recommended for use with the LM36011.

Table 2. Recommended InputCapacitors (X5R/X7R Dielectric)

MANUFACTURER PART NUMBER VALUE CASE SIZE VOLTAGE RATING
TDK Corporation C1608JB0J106M 10 µF 0603 (1.6 mm × 0.8 mm × 0.8 mm) 6.3 V
TDK Corporation C2012JB1A106M 10 µF 0805 (2 mm × 1.25 mm × 1.25 mm) 10 V
Murata GRM188R60J106M 10 µF 0603 (1.6 mm × 0.8 mm × 0.8 mm) 6.3 V
Murata GRM21BR61A106KE19 10 µF 0805 (2 mm × 1.25 mm × 1.25 mm) 10 V

Application Curves

TA = 25°C, VIN = 3.6 V, CIN = 10 µF, VLED = 3.4 V, Flash Time-out = 320 ms and Thermal Scale-Back (TSB) disabled, unless otherwise noted.
LM36011 D016_SNVSAN5.gif
VIN = 4.0 V
Figure 25. LED Flash Efficiency vs Brightness Code
LM36011 D018_SNVSAN5.gif
IFLASH = 1.03 A
Figure 27. LED Flash Efficiency vs Input Voltage
LM36011 D020_SNVSAN5.gif
Figure 29. LED Flash Efficiency vs Input Voltage
LM36011 D022_SNVSAN5.gif
Figure 31. LED Torch Efficiency vs Brightness Code
LM36011 D024_SNVSAN5.gif
ITORCH = 258 mA
Figure 33. LED Torch Efficiency vs Input Voltage
LM36011 D026_SNVSAN5.gif
Figure 35. LED Torch Efficiency vs Input Voltage
LM36011 LM36011_scope_B01.png
Time (200 µs/DIV)
Mode bits (Reg 0x01 bit[1:0]) = 11 (Flash mode)
Figure 37. Flash Start-up with I2C
LM36011 LM36011_scope_B02b.png
Time (2 ms/DIV)
Figure 39. Flash Turn-off with I2C
LM36011 LM36011_scope_B04.png
Time (1 ms/DIV)
Mode bits (Reg 0x01 bit[1:0]) = 00 (Standby mode)
Figure 41. Torch Turn-off with I2C
LM36011 LM36011_scope_B06.png
Time (100 ms/DIV)
STROBE Enabled (Reg 0x01 bit[2] = 1)
Level Triggered (Reg 0x01 bit[3] = 0)
Strobe pulse = 100 ms
Figure 43. Flash Turn-off with Level Triggered STROBE
LM36011 D017_SNVSAN5.gif
IFLASH = 1.5 A
Figure 26. LED Flash Efficiency vs Input Voltage
LM36011 D019_SNVSAN5.gif
IFLASH = 0.75 A
Figure 28. LED Flash Efficiency vs Input Voltage
LM36011 D021_SNVSAN5.gif
Figure 30. LED Flash Efficiency vs Input Voltage
LM36011 D023_SNVSAN5.gif
ITORCH = 376 mA
Figure 32. LED Torch Efficiency vs Input Voltage
LM36011 D025_SNVSAN5.gif
ITORCH = 188 mA
Figure 34. LED Torch Efficiency vs Input Voltage
LM36011 D027_SNVSAN5.gif
Figure 36. LED Torch Efficiency vs Input Voltage
LM36011 LM36011_scope_B02a.png
Time (100 ms/DIV)
Flash Time-out (Reg 0x02 bits[4:1]) = 0111 (320 ms)
Figure 38. Flash Time-out
LM36011 LM36011_scope_B03.png
Time (200 µs/DIV)
Mode bits (Reg 0x01 bit[1:0]) = 10 (Torch mode)
Figure 40. Torch Start-up with I2C
LM36011 LM36011_scope_B05.png
Time (400 µs/DIV)
STROBE Enabled (Reg 0x01 bit[2] = 1)
Figure 42. Flash Start-up with STROBE
LM36011 LM36011_scope_B07.png
Time (100 ms/DIV)
STROBE Enabled (Reg 0x01 bit[2] = 1)
Edge Triggered (Reg 0x01 bit[3] = 1)
Flash Time-out = 320 ms
Figure 44. Flash Turn-off with Edge Triggered STROBE