SNVS520F August   2008  – November 2016 LM3686

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: Linear Regulator - LILO
    6. 7.6 Electrical Characteristics: Linear Regulator - LDO
    7. 7.7 Electrical Characteristics: DC-DC Converter
    8. 7.8 Electrical Characteristics: Global Parameters (DCDC, LILO, and LDO)
    9. 7.9 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DC-DC Converter Operation
        1. 8.3.1.1 PWM Operation
        2. 8.3.1.2 PFM Operation
        3. 8.3.1.3 Internal Synchronous Rectification
        4. 8.3.1.4 Current Limiting
        5. 8.3.1.5 Soft Start
      2. 8.3.2 Linear Regulator Operation (LILO)
        1. 8.3.2.1 Start-up Mode
      3. 8.3.3 Current Limiting (LDO and LILO)
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Application Selection
        2. 9.2.2.2 Inductor Selection
          1. 9.2.2.2.1 Method 1
          2. 9.2.2.2.2 Method 2
        3. 9.2.2.3 External Capacitors
        4. 9.2.2.4 Input Capacitor Selection
          1. 9.2.2.4.1 CIN_DC-DC
          2. 9.2.2.4.2 CIN_LILO
          3. 9.2.2.4.3 CIN_LDO
        5. 9.2.2.5 Output Capacitor
          1. 9.2.2.5.1 COUT_DCDC
          2. 9.2.2.5.2 COUT_LILO
          3. 9.2.2.5.3 COUT_LDO
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 DSBGA Package Assembly and Use
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)(5)
MIN MAX UNIT
VBATT pin to GND and QGND –0.2 6 V
EN_x pins, FB_DC-DC pin, SW pin (GND – 0.2 V) to (VBATT+0.2 V) with 6 V maximum
Continuous power dissipation(4) Internally limited
Junction temperature, TJ-MAX 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to the potential at the GND pin.
If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and specifications.
Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typical) and disengages at TJ = 130°C (typical).
For detailed soldering specifications and information, see AN-1112 DSBGA Wafer Level Chip Scale Package.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±200
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage, VBATT (DC-DC and LDO) 2.7 5.5 V
Junction temperature, TJ –40 125 °C
Ambient temperature, TA(1) –40 85 °C
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

Thermal Information

THERMAL METRIC(1) LM3686 UNIT
YZR (DSBGA)
12 PINS
RθJA Junction-to-ambient thermal resistance 80.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.4 °C/W
RθJB Junction-to-board thermal resistance 16.8 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 16.9 °C/W
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

Electrical Characteristics: Linear Regulator - LILO

Unless otherwise noted, limits apply for TA = 25°C, specifications apply to the closed-loop typical application circuits (linear regulator) with VIN_LDO = VBATT = 3.6 V(1) , VIN_LILO = VOUT_DCDC(NOM), VEN (All) = VBATT, CIN_DC = 4.7 μF, COUT_LILO = 2.2 μF, CIN_LDO = 1 μF , COUT_LDO = 1 μF, COUT_DC = CIN_LILO = 10 μF.(2)(3)(4)(5)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
EN_DC-DC = EN_LILO = ON – LARGE NMOS
ΔVOUT_LILO, VOUT_LILO Output voltage accuracy,
VOUT-LILO
IOUT_LILO = 1 mA to 350 mA,
VIN_LILO = VOUT_DCDC
VBATT = 3.6 V
1.2 V
IOUT_LILO = 1 mA to 350 mA,
VIN_LILO = VOUT_DCDC
VBATT = 3.6 V, –40°C ≤ TA = TJ ≤ 85°C
1.176 1.224
ΔVOUT_LILO / ΔmA Load regulation(6) IOUT_LILO = 1 mA to 350 mA,
VIN_LILO = VOUT_DCDC
VBATT = 3.6 V
4 μV/mA
IOUT_LILO = 1 mA to 350 mA,
VIN_LILO = VOUT_DCDC
VBATT = 3.6 V, –40°C ≤ TA = TJ ≤ 85°C
12
VDROP Dropout voltage(7) VBATT = VOUT_LILO + 1.5 V (VIN_LILO disconnected from VOUT_DCDC)
IOUT = 350 mA
50 mV
VBATT = VOUT_LILO + 1.5 V (VIN_LILO disconnected from VOUT_DCDC)
IOUT = 350 mA, –40°C ≤ TA = TJ ≤ 85°C
80
IQ_VIN_LILO Quiescent current VBATT = VIN_LILO = 3.6 V 70 µA
VBATT = VIN_LILO = 3.6 V
–40°C ≤ TA = TJ ≤ 85°C
90
ISC_LILO Short-circuit current limit VOUT = GND (VOUT_LILO = 0)
–40°C ≤ TA = TJ ≤ 85°C
400 mA
EN_DC-DC = OFF, EN_LILO = ON – SMALL NMOS
ΔVOUT_LILO, VOUT_LILO Output voltage accuracy
VOUT_LILO
IOUT = 1 mA to 50 mA
–40°C ≤ TA = TJ ≤ 85°C
1.176 1.224 V
ΔVOUT_LILO, ΔVBATT Line regulation (small NMOS)(8) VIN_LILO = (VOUT_LILO + 0.3 V) to 5.5 V 0.4 mV/V
VIN_LILO = (VOUT_LILO + 0.3 V) to 5.5 V
–40°C ≤ TA = TJ ≤ 85°C
1.5
ISC_LILO Short-circuit current VOUT_LILO = GND, –40°C ≤ TA = TJ ≤ 85°C 70
TSTARTUP Start-up time EN to 0.95 VOUT 70 µs
SYSTEM CHARACTERISTICS(9)
PSRR Power supply rejection ratio Signal to VBATT = 3.6 V, VIN_LILO = 1.8 V,
IOUT = 200 mA, ƒ = 100 Hz
68 dB
Signal to VIN_LILO = 1.8 V,
IOUT = 200 mA, ƒ = 100 kHz
60
eN_LILO Output noise voltage BW = 10 Hz to 100 kHz, VIN_LILO = 1.8 V,
IOUT = 200 mA, VIN_LDO = 3.6 V
166 µVRMS
ΔVOUT_LILO Dynamic load transient response Pulsed load 1 mA to 350 mA
di/dt = 350 mA / 1 µs
±30(10) mV
ΔVIN_LILO Dynamic load transient response on VBATT VBATT = 3.1 V to 3.7 V
VIN_LILO = VOUT_DCDC
tr, tf = 10 µs, IOUT = 200 mA
±15(10) mV
VIN_LDO must be ON at all time for biasing internal reference circuits.
All voltages are with respect to the potential at the GND pin.
Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VBATT = 3.6 V and TA = 25°C.
The parameters in the electrical characteristic table are tested at VBATT = 3.6 V unless otherwise specified. For performance over the input voltage range refer to Typical Characteristics.
The input voltage ranges recommended for ideal application performance for the specified output voltages are:
VBATT = 2.7 V to 5.5 V for 1 V ≤ VOUT_DCDC < 1.8 V
VBATT = (VOUT_DCDC + 1 V) to 5.5 V for 1.8 V ≤ VOUT_DCDC < 3.6 V.
To calculate the output voltage from the load regulation specified, use the following equation:
ΔVOUT = load regulation (%/mA) × nominal VOUT (V) × ΔIOUT (mA).
Dropout voltage is defined as the input to output voltage differential at which the output voltage falls to 100 mV below the nominal output voltage.
To calculate the output voltage from the line regulation specified, use the following equation:
ΔVOUT = line regulation (%/V) × nominal VOUT (V) × ΔVIN (V).
Specified by design. Not production tested.
For line and load transient specifications, the + symbol represents an overshoot in the output voltage and the – symbol represents an undershoot in the output voltage. The first value signifies overshoot or undershoot at the rising edge and the second value signifies the overshoot or undershoot at the falling edge.

Electrical Characteristics: Linear Regulator - LDO

Unless otherwise noted, limits apply for TA = 25°C.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN_LDO LDO input voltage range 2.7 5.5 V
ΔVOUT_LDO / VOUT_LDO Output voltage accuracy, VOUT-LDO VIN = 3.6 V, IOUT_LDO = 1 mA and 300 mA 2.8 V
VIN = 3.6 V, IOUT_LDO = 1 mA and 300 mA
–40°C ≤ TA = TJ ≤ 85°C
2.744 2.856
VIN = 3.6 V, IOUT_LDO = 1 mA and 300 mA 3 3.06
VIN = 3.6 V, IOUT_LDO = 1 mA and 300 mA
–40°C ≤ TA = TJ ≤ 85°C
2.94
ΔVOUT_LDO / ΔmA Load regulation(5) IOUT_LDO = 1 mA and 300 mA 8 μV/mA
ΔVOUT_LDO / ΔVBATT Line regulation(6) VIN_LDO = (VOUT_LDO(NOM) + 0.3 V) to 5.5 V 0.2 mV/V
VDROP Dropout voltage(7) IOUT = 300 mA 120 mV
IOUT = 300 mA, –40°C ≤ TA = TJ ≤ 85°C 200
IQ Quiescent current Ven = 0.95 V, IOUT = 0 mA 50 µA
Ven = 0.95 V, IOUT = 0 mA
–40°C ≤ TA = TJ ≤ 85°C
80
ISC_LDO Short-circuit current limit VOUT = GND, –40°C ≤ TA = TJ ≤ 85°C 350 mA
SYSTEM CHARACTERISTICS(8)
PSRR Power supply rejection ratio EN_DC = EN_LILO = GND
IOUT = 200 mA, ƒ = 1 kHz
85 dB
Signal to VIN_LDO = 3.6 V,
IOUT = 200 mA, ƒ = 10 kHz
70
eN_LDO Output noise voltage BW = 10 Hz to 100 kHz, VIN_LDO = 3.6 V,
IOUT = 200 mA
6.7 µVRMS
ΔVIN_LDO Dynamic line transient response VIN_LDO = 3.8 V to 4.4 V
tr, tf = 30 µs, IOUT = 1 mA
±2(10) mV
ΔVIN_LILO Dynamic load transient response on VBATT Pulsed load 1 mA and 300 mA
tr, tf = 10 µs
±30(10) mV
All voltages are with respect to the potential at the GND pin.
Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VBATT = 3.6 V and TA = 25°C.
The parameters in the Electrical Characteristics tables are tested at VBATT = 3.6 V unless otherwise specified. For performance over the input voltage range refer to Typical Characteristics.
The input voltage ranges recommended for ideal application performance for the specified output voltages are
VBATT = 2.7 V to 5.5 V for 1 V ≤ VOUT_DCDC < 1.8 V
VBATT = (VOUT_DCDC + 1 V) to 5.5 V for 1.8 V ≤ VOUT_DCDC < 3.6 V
To calculate the output voltage from the load regulation specified, use the following equation:
ΔVOUT = load regulation (%/mA) × nominal VOUT (V) × ΔIOUT (mA)
To calculate the output voltage from the line regulation specified, use the following equation:
ΔVOUT = line regulation (%/V) × nominal VOUT (V) × ΔVIN (V)
Dropout voltage is defined as the input to output voltage differential at which the output voltage falls to 100 mV below the nominal output voltage.
Specified by design. Not production tested.

Electrical Characteristics: DC-DC Converter

Unless otherwise noted, limits apply for TA = 25°C.(2)(3)(4)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB_DCDC Feedback voltage accuracy PWM mode(2) 1.8 V
PWM mode(2), –40°C ≤ TA = TJ ≤ 85°C 1.746 1.836
VREF Internal reference voltage 0.5 V
RDSON(P) Pin-pin resistance for PFET VBATT = 3.6 V
ISW = 100 mA
350 450
RDSON(N) Pin-pin resistance for NFET VBATT = 3.6 V
ISW = 100 mA
150 250
IQ_AUTO Quiescent current for auto mode No load, device is not switching, FB = HIGH 28 µA
No load, device is not switching, FB = HIGH
–40°C ≤ TA = TJ ≤ 85°C
40
ILIM Switch peak current limit Open loop 1.22 A
Open loop, –40°C ≤ TA = TJ ≤ 85°C 1.035 1.375
ƒOSC Internal oscillator frequency PWM mode 3 MHz
PWM mode, –40°C ≤ TA = TJ ≤ 85°C 2.4 3.4
The input voltage ranges recommended for ideal application performance for the specified output voltages are:
VBATT = 2.7 V to 5.5 V for 1 V ≤ VOUT_DCDC < 1.8 V
VBATT = (VOUT_DCDC + 1 V) to 5.5 V for 1.8 V ≤ VOUT_DCDC < 3.6 V
Electrical Characteristics tables reflects open loop data (FB = 0 V and current drawn from SW pin ramped up until cycle by cycle current limit is activated). Closed loop current limit is the peak inductor current measured in the application circuit by increasing output current until output voltage drops by 10%.

Electrical Characteristics: Global Parameters (DCDC, LILO, and LDO)

Unless otherwise noted, limits apply for TA = 25°C.(1)(2)(3)(4)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ_VBATT Quiescent current into VBATT Full power mode
IOUT_DCDC = IOUT_LILO = IOUT_LDO = 0 mA, DC-DC is not switching (FB_DCDC forced higher than VOUT_DCDC)
Ven = 1.1V,
100 µA
Full power mode
IOUT_DCDC = IOUT_LILO = IOUT_LDO = 0 mA, DC-DC is not switching (FB_DCDC forced higher than VOUT_DCDC)
Ven = 1.1V,
–40°C ≤ TA = TJ ≤ 85°C
130
IQ_GLOBAL Shutdown current into VBATT VEN_DCDC = VEN_LILO = VEN_LDO = 0 V 2.5 µA
VEN_DCDC = VEN_LILO = VEN_LDO = 0
–40°C ≤ TA = TJ ≤ 85°C
4
ENABLE PINS (EN_DCDC, EN_LILO, EN_LDO)
IEN Enable pin input current All EN = 0 V .01 µA
All EN = 0 V, –40°C ≤ TA = TJ ≤ 85°C 1
VIH Logic high input –40°C ≤ TA = TJ ≤ 85°C 1.1 V
VIL Logic low input –40°C ≤ TA = TJ ≤ 85°C 0.4 V
All voltages are with respect to the potential at the GND pin.
Mininum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VBATT = 3.6 V and TA = 25°C.
The parameters in the Electrical Characteristics tables are tested at VBATT = 3.6 V unless otherwise specified. For performance over the input voltage range refer to Typical Characteristics.
The input voltage ranges recommended for ideal application performance for the specified output voltages are:
VBATT = 2.7 V to 5.5 V for 1 V ≤ VOUT_DCDC < 1.8 V
VBATT = (VOUT_DCDC + 1 V) to 5.5 V for 1.8 V ≤ VOUT_DCDC < 3.6 V

Typical Characteristics

Unless otherwise specified, typical application (post regulation), VBATT = 3.6 V, TA = 25°C, enable pins tied to VBATT, VOUT_DCDC = 1.8 V, VOUT_LILO = 1.2 V, VOUT_LDO = 2.8 V.
LM3686 30025511.gif
Figure 1. VOUT_DCDC vs IOUT_DCDC
LM3686 30025534.png
Figure 3. Efficiency DC-DC vs Output Current LILO and LDO Disabled
LM3686 30025535.gif
LDO – VIN_LDO = 3.6 V
Figure 5. PSRR vs Frequency
LM3686 30025537.png
Figure 7. Switching Frequency vs Temperature
LM3686 30025539.png
Figure 9. RDSON vs Temperature
LM3686 30025512.gif
Figure 2. VOUT_LILO vs IOUT_LILO
LM3686 30025540.gif
LILO – VIN_LILO = 3.6 V
Figure 4. PSRR vs Frequency
LM3686 30025536.png
LDO – VIN_LDO = 3.6 V
Figure 6. Noise vs Frequency
LM3686 30025538.png
Open Loop
Figure 8. Current Limit vs Temperature
LM3686 30025524.png
All Three Enables Tied Together
Figure 10. Start-up