SLAS734G April 2011 – April 2016 MSP430G2203 , MSP430G2233 , MSP430G2303 , MSP430G2333 , MSP430G2403 , MSP430G2433 , MSP430G2533
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| Voltage applied at VCC to VSS | –0.3 | 4.1 | V | |
| Voltage applied to any pin(2) | –0.3 | VCC + 0.3 | V | |
| Diode current at any device pin | ±2 | mA | ||
| Storage temperature, Tstg(3) | Unprogrammed device | –55 | 150 | °C |
| Programmed device | –55 | 150 | ||
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±1000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±250 | |||
| MIN | NOM | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| VCC | Supply voltage | During program execution | 1.8 | 3.6 | V | |
| During flash programming or erase | 2.2 | 3.6 | ||||
| VSS | Supply voltage | 0 | V | |||
| TA | Operating free-air temperature | –40 | 85 | °C | ||
| fSYSTEM | Processor frequency (maximum MCLK frequency using the USART module)(1)(2) | VCC = 1.8 V, Duty cycle = 50% ±10% |
DC | 6 | MHz | |
| VCC = 2.7 V, Duty cycle = 50% ±10% |
DC | 12 | ||||
| VCC = 3.3 V, Duty cycle = 50% ±10% |
DC | 16 | ||||
NOTE:
Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V.| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| IAM,1MHz | Active mode (AM) current at 1 MHz | fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 0 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 |
2.2 V | 230 | µA | ||
| 3 V | 330 | 420 | |||||
Figure 5-2 Active Mode Current vs VCC, TA = 25°C
Figure 5-3 Active Mode Current vs DCO Frequency
| PARAMETER | TEST CONDITIONS | TA | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|---|
| ILPM0,1MHz | Low-power mode 0 (LPM0) current(3) | fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 |
25°C | 2.2 V | 56 | µA | ||
| ILPM2 | Low-power mode 2 (LPM2) current(4) | fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 |
25°C | 2.2 V | 22 | µA | ||
| ILPM3,LFXT1 | Low-power mode 3 (LPM3) current(4) | fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 |
25°C | 2.2 V | 0.7 | 1.5 | µA | |
| ILPM3,VLO | Low-power mode 3 current, (LPM3)(4) | fDCO = fMCLK = fSMCLK = 0 MHz, fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 |
25°C | 2.2 V | 0.5 | 0.7 | µA | |
| ILPM4 | Low-power mode 4 (LPM4) current(5) | fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 |
25°C | 2.2 V | 0.1 | 0.5 | µA | |
| 85°C | 0.8 | 1.7 | ||||||
Figure 5-4 LPM3 Current vs Temperature
Figure 5-5 LPM4 Current vs Temperature
| PARAMETER | VALUE (4) | UNIT | |||
|---|---|---|---|---|---|
| RθJA | Junction-to-ambient thermal resistance, still air (1) | VQFN (RHB-32) | 32.1 | °C/W | |
| TSSOP (PW-28) | 72.2 | ||||
| TSSOP (PW-20) | 86.5 | ||||
| PDIP (N-20) | 49.3 | ||||
| RθJC(TOP) | Junction-to-case (top) thermal resistance (2) | VQFN (RHB-32) | 22.3 | °C/W | |
| TSSOP (PW-28) | 18.3 | ||||
| TSSOP (PW-20) | 20.8 | ||||
| PDIP (N-20) | 41 | ||||
| RθJC(BOTTOM) | Junction-to-case (bottom) thermal resistance | VQFN (RHB-32) | 1.4 | °C/W | |
| TSSOP (PW-28) | N/A | ||||
| TSSOP (PW-20) | N/A | ||||
| PDIP (N-20) | N/A | ||||
| θJB | Junction-to-board thermal resistance (3) | VQFN (RHB-32) | 6.1 | °C/W | |
| TSSOP (PW-28) | 30.4 | ||||
| TSSOP (PW-20) | 39 | ||||
| PDIP (N-20) | 30.2 | ||||
| ΨJT | Junction-to-package-top characterization parameter | VQFN (RHB-32) | 0.3 | °C/W | |
| TSSOP (PW-28) | 0.7 | ||||
| TSSOP (PW-20) | 0.8 | ||||
| PDIP (N-20) | 18.1 | ||||
| ΨJB | Junction-to-board characterization parameter | VQFN (RHB-32) | 6.1 | °C/W | |
| TSSOP (PW-28) | 29.9 | ||||
| TSSOP (PW-20) | 38.1 | ||||
| PDIP (N-20) | 30.1 | ||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VIT+ | Positive-going input threshold voltage | 0.45 VCC | 0.75 VCC | V | |||
| 3 V | 1.35 | 2.25 | |||||
| VIT– | Negative-going input threshold voltage | 0.25 VCC | 0.55 VCC | V | |||
| 3 V | 0.75 | 1.65 | |||||
| Vhys | Input voltage hysteresis (VIT+ – VIT–) | 3 V | 0.3 | 1 | V | ||
| RPull | Pullup or pulldown resistor | For pullup: VIN = VSS
For pulldown: VIN = VCC |
3 V | 20 | 35 | 50 | kΩ |
| CI | Input capacitance | VIN = VSS or VCC | 5 | pF | |||
| PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
|---|---|---|---|---|---|---|
| Ilkg(Px.y) | High-impedance leakage current | See (1) (2) | 3 V | ±50 | nA | |
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VOH | High-level output voltage | I(OHmax) = –6 mA(1) | 3 V | VCC – 0.3 | V | ||
| VOL | Low-level output voltage | I(OLmax) = 6 mA(1) | 3 V | VSS + 0.3 | V | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fPx.y | Port output frequency (with load) | Px.y, CL = 20 pF, RL = 1 kΩ(1) (2) | 3 V | 12 | MHz | ||
| fPort_CLK | Clock output frequency | Px.y, CL = 20 pF(2) | 3 V | 16 | MHz | ||
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
Figure 5-6 Typical Low-Level Output Current vs Low-Level Output Voltage
Figure 5-8 Typical High-Level Output Current vs High-Level Output Voltage
Figure 5-7 Typical Low-Level Output Current vs Low-Level Output Voltage
Figure 5-9 Typical High-Level Output Current vs High-Level Output Voltage
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| foP1.x | Port output oscillation frequency | P1.y, CL = 10 pF, RL = 100 kΩ(1)(2) | 3 V | 1400 | kHz | ||
| P1.y, CL = 20 pF, RL = 100 kΩ(1)(2) | 900 | ||||||
| foP2.x | Port output oscillation frequency | P2.0 to P2.5, CL = 10 pF, RL = 100 kΩ(1)(2) | 3 V | 1800 | kHz | ||
| P2.0 to P2.5, CL = 20 pF, RL = 100 kΩ(1)(2) | 1000 | ||||||
| foP2.6/7 | Port output oscillation frequency | P2.6 and P2.7, CL = 20 pF, RL = 100 kΩ(1)(2) | 3 V | 700 | kHz | ||
| foP3.x | Port output oscillation frequency | P3.y, CL = 10 pF, RL = 100 kΩ(1)(2) | 3 V | 1800 | kHz | ||
| P3.y, CL = 20 pF, RL = 100 kΩ(1)(2) | 1000 | ||||||
NOTE:
One output active at a time.
NOTE:
One output active at a time.| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VCC(start) | See Figure 5-12 | dVCC/dt ≤ 3 V/s | 0.7 V(B_IT--) | V | |||
| V(B_IT–) | See Figure 5-12 through Figure 5-14 | dVCC/dt ≤ 3 V/s | 1.35 | V | |||
| Vhys(B_IT–) | See Figure 5-12 | dVCC/dt ≤ 3 V/s | 140 | mV | |||
| td(BOR) | See Figure 5-12 | 2000 | µs | ||||
| t(reset) | Pulse duration needed at RST/NMI pin to accepted reset internally | 2.2 V | 2 | µs | |||
Figure 5-12 POR and BOR vs Supply Voltage
Figure 5-13 VCC(drop) Level With a Square Voltage Drop to Generate a POR or BOR Signal
Figure 5-14 VCC(drop) Level With a Triangle Voltage Drop to Generate a POR or BOR Signal
|
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VCC | Supply voltage | RSELx < 14 | 1.8 | 3.6 | V | ||
| RSELx = 14 | 2.2 | 3.6 | |||||
| RSELx = 15 | 3 | 3.6 | |||||
| fDCO(0,0) | DCO frequency (0, 0) | RSELx = 0, DCOx = 0, MODx = 0 | 3 V | 0.06 | 0.14 | MHz | |
| fDCO(0,3) | DCO frequency (0, 3) | RSELx = 0, DCOx = 3, MODx = 0 | 3 V | 0.07 | 0.17 | MHz | |
| fDCO(1,3) | DCO frequency (1, 3) | RSELx = 1, DCOx = 3, MODx = 0 | 3 V | 0.15 | MHz | ||
| fDCO(2,3) | DCO frequency (2, 3) | RSELx = 2, DCOx = 3, MODx = 0 | 3 V | 0.21 | MHz | ||
| fDCO(3,3) | DCO frequency (3, 3) | RSELx = 3, DCOx = 3, MODx = 0 | 3 V | 0.30 | MHz | ||
| fDCO(4,3) | DCO frequency (4, 3) | RSELx = 4, DCOx = 3, MODx = 0 | 3 V | 0.41 | MHz | ||
| fDCO(5,3) | DCO frequency (5, 3) | RSELx = 5, DCOx = 3, MODx = 0 | 3 V | 0.58 | MHz | ||
| fDCO(6,3) | DCO frequency (6, 3) | RSELx = 6, DCOx = 3, MODx = 0 | 3 V | 0.54 | 1.06 | MHz | |
| fDCO(7,3) | DCO frequency (7, 3) | RSELx = 7, DCOx = 3, MODx = 0 | 3 V | 0.80 | 1.50 | MHz | |
| fDCO(8,3) | DCO frequency (8, 3) | RSELx = 8, DCOx = 3, MODx = 0 | 3 V | 1.6 | MHz | ||
| fDCO(9,3) | DCO frequency (9, 3) | RSELx = 9, DCOx = 3, MODx = 0 | 3 V | 2.3 | MHz | ||
| fDCO(10,3) | DCO frequency (10, 3) | RSELx = 10, DCOx = 3, MODx = 0 | 3 V | 3.4 | MHz | ||
| fDCO(11,3) | DCO frequency (11, 3) | RSELx = 11, DCOx = 3, MODx = 0 | 3 V | 4.25 | MHz | ||
| fDCO(12,3) | DCO frequency (12, 3) | RSELx = 12, DCOx = 3, MODx = 0 | 3 V | 4.30 | 7.30 | MHz | |
| fDCO(13,3) | DCO frequency (13, 3) | RSELx = 13, DCOx = 3, MODx = 0 | 3 V | 6.00 | 9.60 | MHz | |
| fDCO(14,3) | DCO frequency (14, 3) | RSELx = 14, DCOx = 3, MODx = 0 | 3 V | 8.60 | 13.9 | MHz | |
| fDCO(15,3) | DCO frequency (15, 3) | RSELx = 15, DCOx = 3, MODx = 0 | 3 V | 12.0 | 18.5 | MHz | |
| fDCO(15,7) | DCO frequency (15, 7) | RSELx = 15, DCOx = 7, MODx = 0 | 3 V | 16.0 | 26.0 | MHz | |
| SRSEL | Frequency step between range RSEL and RSEL+1 | SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO) | 3 V | 1.35 | ratio | ||
| SDCO | Frequency step between tap DCO and DCO+1 | SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO) | 3 V | 1.08 | ratio | ||
| Duty cycle | Measured at SMCLK output | 3 V | 50% | ||||
| PARAMETER | TEST CONDITIONS | TA | VCC | MIN | TYP | MAX | UNIT |
|---|---|---|---|---|---|---|---|
| 1-MHz tolerance over temperature(1) | BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V |
0°C to 85°C | 3 V | –3% | ±0.5% | +3% | |
| 1-MHz tolerance over VCC | BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V |
30°C | 1.8 V to 3.6 V | –3% | ±2% | +3% | |
| 1-MHz tolerance overall | BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V |
–40°C to 85°C | 1.8 V to 3.6 V | –6% | ±3% | +6% | |
| 8-MHz tolerance over temperature(1) | BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V |
0°C to 85°C | 3 V | –3% | ±0.5% | +3% | |
| 8-MHz tolerance over VCC | BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V |
30°C | 2.2 V to 3.6 V | –3% | ±2% | +3% | |
| 8-MHz tolerance overall | BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V |
–40°C to 85°C | 2.2 V to 3.6 V | –6% | ±3% | +6% | |
| 12-MHz tolerance over temperature(1) | BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30°C and 3 V |
0°C to 85°C | 3 V | –3% | ±0.5% | +3% | |
| 12-MHz tolerance over VCC | BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30°C and 3 V |
30°C | 2.7 V to 3.6 V | –3% | ±2% | +3% | |
| 12-MHz tolerance overall | BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30°C and 3 V |
–40°C to 85°C | 2.7 V to 3.6 V | –6% | ±3% | +6% | |
| 16-MHz tolerance over temperature(1) | BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V |
0°C to 85°C | 3 V | –3% | ±0.5% | +3% | |
| 16-MHz tolerance over VCC | BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V |
30°C | 3.3 V to 3.6 V | –3% | ±2% | +3% | |
| 16-MHz tolerance overall | BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V |
–40°C to 85°C | 3.3 V to 3.6 V | –6% | ±3% | +6% |
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| tDCO,LPM3/4 | DCO clock wake-up time from LPM3 or LPM4(1) | BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz | 3 V | 1.5 | µs | ||
| tCPU,LPM3/4 | CPU wake-up time from LPM3 or LPM4(2) | 1/fMCLK + tClock,LPM3/4 |
|||||
Figure 5-15 DCO Wake-up Time From LPM3 vs DCO Frequency
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fLFXT1,LF | LFXT1 oscillator crystal frequency, LF mode 0, 1 | XTS = 0, LFXT1Sx = 0 or 1 | 1.8 V to 3.6 V | 32768 | Hz | ||
| fLFXT1,LF,logic | LFXT1 oscillator logic level square-wave input frequency, LF mode | XTS = 0, XCAPx = 0, LFXT1Sx = 3 | 1.8 V to 3.6 V | 10000 | 32768 | 50000 | Hz |
| OALF | Oscillation allowance for LF crystals | XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 6 pF |
500 | kΩ | |||
| XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 12 pF |
200 | ||||||
| CL,eff | Integrated effective load capacitance, LF mode(1) | XTS = 0, XCAPx = 0 | 1 | pF | |||
| XTS = 0, XCAPx = 1 | 5.5 | ||||||
| XTS = 0, XCAPx = 2 | 8.5 | ||||||
| XTS = 0, XCAPx = 3 | 11 | ||||||
| Duty cycle, LF mode | XTS = 0, Measured at P2.0/ACLK, fLFXT1,LF = 32768 Hz |
2.2 V | 30% | 50% | 70% | ||
| fFault,LF | Oscillator fault frequency, LF mode(3) | XTS = 0, XCAPx = 0, LFXT1Sx = 3(2) | 2.2 V | 10 | 10000 | Hz | |
| PARAMETER | TA | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fVLO | VLO frequency | –40°C to 85°C | 3 V | 4 | 12 | 20 | kHz |
| dfVLO/dT | VLO frequency temperature drift | –40°C to 85°C | 3 V | 0.5 | %/°C | ||
| dfVLO/dVCC | VLO frequency supply voltage drift | 25°C | 1.8 V to 3.6 V | 4 | %/V | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fTA | Timer_A input clock frequency | SMCLK, duty cycle = 50% ±10% | fSYSTEM | MHz | |||
| tTA,cap | Timer_A capture timing | TA0, TA1 | 3 V | 20 | ns | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fUSCI | USCI input clock frequency | SMCLK, duty cycle = 50% ±10% | fSYSTEM | MHz | |||
| fmax,BITCLK | Maximum BITCLK clock frequency (equals baud rate in MBaud)(1) | 3 V | 2 | MHz | |||
| tτ | UART receive deglitch time(2) | 3 V | 50 | 100 | 600 | ns | |
| PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
|---|---|---|---|---|---|---|
| fUSCI | USCI input clock frequency | SMCLK, duty cycle = 50% ±10% | fSYSTEM | MHz | ||
| tSU,MI | SOMI input data setup time | 3 V | 75 | ns | ||
| tHD,MI | SOMI input data hold time | 3 V | 0 | ns | ||
| tVALID,MO | SIMO output data valid time | UCLK edge to SIMO valid, CL = 20 pF | 3 V | 20 | ns | |
Figure 5-16 SPI Master Mode, CKPH = 0
Figure 5-17 SPI Master Mode, CKPH = 1
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| tSTE,LEAD | STE lead time, STE low to clock | 3 V | 50 | ns | |||
| tSTE,LAG | STE lag time, Last clock to STE high | 3 V | 10 | ns | |||
| tSTE,ACC | STE access time, STE low to SOMI data out | 3 V | 50 | ns | |||
| tSTE,DIS | STE disable time, STE high to SOMI high impedance | 3 V | 50 | ns | |||
| tSU,SI | SIMO input data setup time | 3 V | 15 | ns | |||
| tHD,SI | SIMO input data hold time | 3 V | 10 | ns | |||
| tVALID,SO | SOMI output data valid time | UCLK edge to SOMI valid, CL = 20 pF |
3 V | 50 | 75 | ns | |
Figure 5-18 SPI Slave Mode, CKPH = 0
Figure 5-19 SPI Slave Mode, CKPH = 1
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fUSCI | USCI input clock frequency | SMCLK, duty cycle = 50% ±10% | fSYSTEM | MHz | |||
| fSCL | SCL clock frequency | 3 V | 0 | 400 | kHz | ||
| tHD,STA | Hold time (repeated) START | fSCL ≤ 100 kHz | 3 V | 4.0 | µs | ||
| fSCL > 100 kHz | 0.6 | ||||||
| tSU,STA | Setup time for a repeated START | fSCL ≤ 100 kHz | 3 V | 4.7 | µs | ||
| fSCL > 100 kHz | 0.6 | ||||||
| tHD,DAT | Data hold time | 3 V | 0 | ns | |||
| tSU,DAT | Data setup time | 3 V | 250 | ns | |||
| tSU,STO | Setup time for STOP | 3 V | 4.0 | µs | |||
| tSP | Pulse duration of spikes suppressed by input filter | 3 V | 50 | 100 | 600 | ns | |
Figure 5-20 I2C Mode Timing
| PARAMETER | TEST CONDITIONS | TA | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|---|
| VCC | Analog supply voltage | VSS = 0 V | 2.2 | 3.6 | V | |||
| VAx | Analog input voltage(2) | All Ax terminals, Analog inputs selected in ADC10AE register | 3 V | 0 | VCC | V | ||
| IADC10 | ADC10 supply current(3) | fADC10CLK = 5.0 MHz, ADC10ON = 1, REFON = 0, ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0 |
25°C | 3 V | 0.6 | mA | ||
| IREF+ | Reference supply current, reference buffer disabled(4) | fADC10CLK = 5.0 MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0 |
25°C | 3 V | 0.25 | mA | ||
| fADC10CLK = 5.0 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0 |
0.25 | |||||||
| IREFB,0 | Reference buffer supply current with ADC10SR = 0(4) | fADC10CLK = 5.0 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 0 |
25°C | 3 V | 1.1 | mA | ||
| IREFB,1 | Reference buffer supply current with ADC10SR = 1(4) | fADC10CLK = 5.0 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1 |
25°C | 3 V | 0.5 | mA | ||
| CI | Input capacitance | Only one terminal Ax can be selected at one time | 25°C | 3 V | 27 | pF | ||
| RI | Input MUX ON resistance | 0 V ≤ VAx ≤ VCC | 25°C | 3 V | 1000 | Ω | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|---|
| VCC,REF+ | Positive built-in reference analog supply voltage range | IVREF+ ≤ 1 mA, REF2_5V = 0 | 2.2 | V | ||||
| IVREF+ ≤ 1 mA, REF2_5V = 1 | 2.9 | |||||||
| VREF+ | Positive built-in reference voltage | IVREF+ ≤ IVREF+max, REF2_5V = 0 | 3 V | 1.41 | 1.5 | 1.59 | V | |
| IVREF+ ≤ IVREF+max, REF2_5V = 1 | 2.35 | 2.5 | 2.65 | |||||
| ILD,VREF+ | Maximum VREF+ load current | 3 V | ±1 | mA | ||||
| VREF+ load regulation | IVREF+ = 500 µA ±100 µA, Analog input voltage VAx ≈ 0.75 V, REF2_5V = 0 |
3 V | ±2 | LSB | ||||
| IVREF+ = 500 µA ±100 µA, Analog input voltage VAx ≈ 1.25 V, REF2_5V = 1 |
±2 | |||||||
| VREF+ load regulation response time | IVREF+ = 100 µA → 900 µA, VAx ≈ 0.5 × VREF+, Error of conversion result ≤ 1 LSB, ADC10SR = 0 |
3 V | 400 | ns | ||||
| CVREF+ | Maximum capacitance at pin VREF+ | IVREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1 | 3 V | 100 | pF | |||
| TCREF+ | Temperature coefficient | IVREF+ = const with 0 mA ≤ IVREF+ ≤ 1 mA | 3 V | ±100 | ppm/ °C | |||
| tREFON | Settling time of internal reference voltage to 99.9% VREF | IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 0 → 1 |
3.6 V | 30 | µs | |||
| tREFBURST | Settling time of reference buffer to 99.9% VREF | IVREF+ = 0.5 mA, REF2_5V = 1, REFON = 1, REFBURST = 1, ADC10SR = 0 |
3 V | 2 | µs | |||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VEREF+ | Positive external reference input voltage range (2) | VEREF+ > VEREF–, SREF1 = 1, SREF0 = 0 |
1.4 | VCC | V | ||
| VEREF– ≤ VEREF+ ≤ VCC – 0.15 V, SREF1 = 1, SREF0 = 1 (3) |
1.4 | 3 | |||||
| VEREF– | Negative external reference input voltage range (4) | VEREF+ > VEREF– | 0 | 1.2 | V | ||
| ΔVEREF | Differential external reference input voltage range, ΔVEREF = VEREF+ – VEREF– |
VEREF+ > VEREF– (5) | 1.4 | VCC | V | ||
| IVEREF+ | Static input current into VEREF+ | 0 V ≤ VEREF+ ≤ VCC, SREF1 = 1, SREF0 = 0 |
3 V | ±1 | µA | ||
| 0 V ≤ VEREF+ ≤ VCC – 0.15 V ≤ 3 V, SREF1 = 1, SREF0 = 1(3) |
3 V | 0 | |||||
| IVEREF– | Static input current into VEREF– | 0 V ≤ VEREF– ≤ VCC | 3 V | ±1 | µA | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|---|
| fADC10CLK | ADC10 input clock frequency | For specified performance of ADC10 linearity parameters | ADC10SR = 0 | 3 V | 0.45 | 6.3 | MHz | |
| ADC10SR = 1 | 0.45 | 1.5 | ||||||
| fADC10OSC | ADC10 built-in oscillator frequency | ADC10DIVx = 0, ADC10SSELx = 0, fADC10CLK = fADC10OSC |
3 V | 3.7 | 6.3 | MHz | ||
| tCONVERT | Conversion time | ADC10 built-in oscillator, ADC10SSELx = 0, fADC10CLK = fADC10OSC |
3 V | 2.06 | 3.51 | µs | ||
| fADC10CLK from ACLK, MCLK, or SMCLK: ADC10SSELx ≠ 0 | 13 × ADC10DIV × 1 / fADC10CLK |
|||||||
| tADC10ON | Turnon settling time of the ADC | (1) | 100 | ns | ||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| EI | Integral linearity error | 3 V | ±1 | LSB | |||
| ED | Differential linearity error | 3 V | ±1 | LSB | |||
| EO | Offset error | Source impedance RS < 100 Ω | 3 V | ±1 | LSB | ||
| EG | Gain error | 3 V | ±1.1 | ±2 | LSB | ||
| ET | Total unadjusted error | 3 V | ±2 | ±5 | LSB | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| ISENSOR | Temperature sensor supply current(1) | REFON = 0, INCHx = 0Ah, TA = 25°C | 3 V | 60 | µA | ||
| TCSENSOR | ADC10ON = 1, INCHx = 0Ah (2) | 3 V | 3.55 | mV/°C | |||
| tSensor(sample) | Sample time required if channel 10 is selected (3) | ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB |
3 V | 30 | µs | ||
| IVMID | Current into divider at channel 11 | ADC10ON = 1, INCHx = 0Bh | 3 V | (4) | µA | ||
| VMID | VCC divider at channel 11 | ADC10ON = 1, INCHx = 0Bh, VMID ≈ 0.5 × VCC |
3 V | 1.5 | V | ||
| tVMID(sample) | Sample time required if channel 11 is selected (5) | ADC10ON = 1, INCHx = 0Bh, Error of conversion result ≤ 1 LSB |
3 V | 1220 | ns | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VCC(PGM/ERASE) | Program and erase supply voltage | 2.2 | 3.6 | V | |||
| fFTG | Flash timing generator frequency | 257 | 476 | kHz | |||
| IPGM | Supply current from VCC during program | 2.2 V, 3.6 V | 1 | 5 | mA | ||
| IERASE | Supply current from VCC during erase | 2.2 V, 3.6 V | 1 | 7 | mA | ||
| tCPT | Cumulative program time(1) | 2.2 V, 3.6 V | 10 | ms | |||
| tCMErase | Cumulative mass erase time | 2.2 V, 3.6 V | 20 | ms | |||
| Program and erase endurance | 104 | 105 | cycles | ||||
| tRetention | Data retention duration | TJ = 25°C | 100 | years | |||
| tWord | Word or byte program time | See (2) | 30 | tFTG | |||
| tBlock, 0 | Block program time for first byte or word | See (2) | 25 | tFTG | |||
| tBlock, 1-63 | Block program time for each additional byte or word | See (2) | 18 | tFTG | |||
| tBlock, End | Block program end-sequence wait time | See (2) | 6 | tFTG | |||
| tMass Erase | Mass erase time | See (2) | 10593 | tFTG | |||
| tSeg Erase | Segment erase time | See (2) | 4819 | tFTG | |||
| PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |
|---|---|---|---|---|---|
| V(RAMh) | RAM retention supply voltage (1) | CPU halted | 1.6 | V | |
| PARAMETER | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| fSBW | Spy-Bi-Wire input frequency | 2.2 V | 0 | 20 | MHz | |
| tSBW,Low | Spy-Bi-Wire low clock pulse duration | 2.2 V | 0.025 | 15 | µs | |
| tSBW,En | Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge(1)) |
2.2 V | 1 | µs | ||
| tSBW,Ret | Spy-Bi-Wire return to normal operation time | 2.2 V | 15 | 100 | µs | |
| fTCK | TCK input frequency(2) | 2.2 V | 0 | 5 | MHz | |
| RInternal | Internal pulldown resistance on TEST | 2.2 V | 25 | 60 | 90 | kΩ |
| PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |
|---|---|---|---|---|---|
| VCC(FB) | Supply voltage during fuse-blow condition | TA = 25°C | 2.5 | V | |
| VFB | Voltage level on TEST for fuse blow | 6 | 7 | V | |
| IFB | Supply current into TEST during fuse blow | 100 | mA | ||
| tFB | Time to blow fuse | 1 | ms | ||