SLAS887A September   2014  – May 2018

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
    3. 4.3 Pin Multiplexing
    4. 4.4 Connection of Unused Pins
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Active Mode Supply Current (Into VCC) Excluding External Current
    5. 5.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current
    6. 5.6 Thermal Resistance Characteristics
    7. 5.7 Timing and Switching Characteristics
      1. 5.7.1  Reset Timing
        1. Table 5-1 Reset Timing
      2. 5.7.2  Clock Specifications
        1. Table 5-2 DCO in External Resistor Mode
        2. Table 5-3 DCO in Internal Resistor Mode
        3. Table 5-4 DCO Overall Tolerance Table
        4. Table 5-5 DCO in Bypass Mode Recommended Operating Conditions
      3. 5.7.3  Wake-up Characteristics
        1. Table 5-6 Wake-up Times From Low Power Modes
      4. 5.7.4  I/O Ports
        1. Table 5-7   Schmitt-Trigger Inputs – General-Purpose I/O
        2. Table 5-8   Inputs – Ports P1 and P2
        3. Table 5-9   Leakage Current – General-Purpose I/O
        4. Table 5-10 Outputs – General-Purpose I/O
        5. Table 5-11 Output Frequency – General-Purpose I/O
        6. 5.7.4.1     Typical Characteristics – Outputs
      5. 5.7.5  Power Management Module
        1. Table 5-12 PMM, High-Side Brownout Reset (BORH)
        2. Table 5-13 PMM, Low-Side SVS (SVSL)
        3. Table 5-14 PMM, Core Voltage
        4. Table 5-15 PMM, Voltage Monitor (VMON)
      6. 5.7.6  Reference Module
        1. Table 5-16 Voltage Reference (REF)
        2. Table 5-17 Temperature Sensor
      7. 5.7.7  SD24
        1. Table 5-18 SD24 Power Supply and Recommended Operating Conditions
        2. Table 5-19 SD24 Internal Voltage Reference
        3. Table 5-20 SD24 External Voltage Reference
        4. Table 5-21 SD24 Input Range
        5. Table 5-22 SD24 Performance, Internal Reference (SD24REFS = 1, SD24OSRx = 256)
        6. Table 5-23 SD24 Performance, External Reference (SD24REFS = 0, SD24OSRx = 256)
      8. 5.7.8  eUSCI
        1. Table 5-24 eUSCI (UART Mode) Recommended Operating Conditions
        2. Table 5-25 eUSCI (UART Mode)
        3. Table 5-26 eUSCI (SPI Master Mode) Recommended Operating Conditions
        4. Table 5-27 eUSCI (SPI Master Mode)
        5. Table 5-28 eUSCI (SPI Slave Mode)
        6. Table 5-29 eUSCI (I2C Mode)
      9. 5.7.9  Timer_A
        1. Table 5-30 Timer_A
      10. 5.7.10 Flash
        1. Table 5-31 Flash Memory
      11. 5.7.11 Emulation and Debug
        1. Table 5-32 JTAG and Spy-Bi-Wire Interface
  6. 6Detailed Description
    1. 6.1  Overview
    2. 6.2  Functional Block Diagrams
    3. 6.3  CPU
    4. 6.4  Instruction Set
    5. 6.5  Operating Modes
    6. 6.6  Interrupt Vector Addresses
    7. 6.7  Special Function Registers
      1. Table 6-4 Interrupt Enable 1 (Address = 00h)
      2. Table 6-5 Interrupt Flag Register 1 (Address = 02h)
    8. 6.8  Flash Memory
    9. 6.9  JTAG Operation
      1. 6.9.1 JTAG Standard Interface
      2. 6.9.2 Spy-Bi-Wire Interface
      3. 6.9.3 JTAG Disable Register
        1. Table 6-1 SYSJTAGDIS Register
    10. 6.10 Peripherals
      1. 6.10.1 Clock System
      2. 6.10.2 Power-Management Module (PMM)
      3. 6.10.3 Digital I/O
      4. 6.10.4 Watchdog Timer (WDT)
      5. 6.10.5 Timer TA0
      6. 6.10.6 Timer TA1
      7. 6.10.7 Enhanced Universal Serial Communication Interface (eUSCI)
      8. 6.10.8 Hardware Multiplier
      9. 6.10.9 SD24
    11. 6.11 Input/Output Diagrams
      1. 6.11.1 Port P1, P1.0 to P1.3, Input/Output With Schmitt Trigger
      2. 6.11.2 Port P1, P1.4 to P1.7, Input/Output With Schmitt Trigger
      3. 6.11.3 Port P2, P2.0 to P2.2 and P2.4 to P2.7, Input/Output With Schmitt Trigger
      4. 6.11.4 Port P2, P2.3, Input/Output With Schmitt Trigger
    12. 6.12 Device Descriptor
    13. 6.13 Memory
      1. 6.13.1 Peripheral File Map
    14. 6.14 Identification
      1. 6.14.1 Device Identification
      2. 6.14.2 JTAG Identification
  7. 7Applications, Implementation, and Layout
  8. 8Device and Documentation Support
    1. 8.1 Getting Started and Next Steps
    2. 8.2 Device Nomenclature
    3. 8.3 Tools and Software
    4. 8.4 Documentation Support
    5. 8.5 Related Links
    6. 8.6 Community Resources
    7. 8.7 Trademarks
    8. 8.8 Electrostatic Discharge Caution
    9. 8.9 Glossary
  9. 9Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Applications, Implementation, and Layout

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

The following resources provide application guidelines and best practices when designing with the MSP430i20xx devices.

Implementation of a One- or Two-Phase Electronic Watt-Hour Meter Using MSP430i20xx

This application report describes the implementation of a low-cost 1- or 2-phase electronic electricity meter that uses the TI MSP430i20xx metering processor. This application report includes the necessary information with regard to metrology software and hardware procedures for this single-chip implementation.

Single-Phase and DC Embedded Metering Power Using MSP430i2040

This report describes an EVM design that uses the MSP430i2040 microcontroller in the application of embedded metering (submetering). In this application space, the electricity measuring device is embedded in the end application and provides the user with information about the voltage, current, and power consumption of the device. In addition, the EVM can compensate for the line resistance and EMI filter capacitance.

Single-Phase AC and DC Power Monitor With Wire Resistance and EMI Capacitor Compensation

This reference design shows the application of a single-phase AC and DC power monitor (server power monitor) using the MSP430i2040 microcontroller.

Hardware Features

  • Spy-Bi-Wire debugging interface
  • 14-pin debugger connector allows direct interface to MSP-FET430UIF without the need for an adaptor
  • Built-in switching mode power supply that can be supplied by 85 to 265 VAC (47 Hz to 63 Hz) or 120 to 380 VDC simplifies evaluation setup
  • Built-in RS232 external communication interface for reading measurements and performing calibration
  • Seven built-in LEDs for customer debugging and visual monitoring

Software Features

  • Measurement of root mean square voltage, root mean square current, active power, reactive power, apparent power, power factor, AC frequency, voltage THD, current THD, fundamental voltage, fundamental current, and fundamental active power
  • Readings update every four AC cycles or every 80 ms in case of DC input
  • Can measure AC and DC
  • Can switch between AC and DC measurement mode automatically
  • Can compensate for EMI filter capacitor and wire resistance
  • No separate DC calibration required

Three-Outlet Smart Power Strip

This reference design shows the application of a 3-socket power strip with power consumption measuring capability using the MSP430i2040 microcontroller.

Features

  • Measures individual power and current of three socket outlets
  • Built-in relay for further functionality expansion:
    • Switch off an output based on user current limit setting
    • Switch on or off an output based on user set master current trigger level
  • Supports latched and nonlatched relay
  • Built-in power supply and debugging interface
  • Onboard connector to external communication modules:
    • Isolated serial (on first version)