SBOS432G August   2008  – August 2016 OPA2330 , OPA330 , OPA4330

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configurations and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: OPA330
    5. 7.5 Thermal Information: OPA2330
    6. 7.6 Thermal Information: OPA4330
    7. 7.7 Electrical Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Operating Voltage
      2. 9.1.2 Input Voltage
      3. 9.1.3 Input Differential Voltage
      4. 9.1.4 Internal Offset Correction
      5. 9.1.5 EMI Susceptibility and Input Filtering
      6. 9.1.6 Achieving Output Swing to the Operational Amplifier Negative Rail
      7. 9.1.7 Photosensitivity
    2. 9.2 Typical Application
      1. 9.2.1 Bidirectional Current-Sensing
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
    3. 9.3 System Examples
      1. 9.3.1 Single Operational Amplifier Bridge Amplifier
      2. 9.3.2 Low-Side Current Monitor
      3. 9.3.3 Thermistor Measurement
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 VQFN and SON Packages
      2. 11.1.2 VQFN and SON Layout Guidelines
      3. 11.1.3 OPA330 DSBGA
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 TINA-TI™ (Free Software Download)
        2. 12.1.1.2 DIP Adapter EVM
        3. 12.1.1.3 Universal Operational Amplifier EVM
        4. 12.1.1.4 TI Precision Designs
        5. 12.1.1.5 WEBENCH Filter Designer
        6. 12.1.1.6 Related Parts
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Community Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DGK|8
  • DRB|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply, VS = (V+) – (V–) 7 V
Signal input terminals(2) (TBD should terminal be pin?) (V–) –0.3 (V+) + 0.3 V
Current Signal input terminals(2) –10 10 mA
Output short-circuit(3) Continuous
Temperature Operating range, TA –40 150 °C
Junction, TJ 150 °C
Storage, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less.
(3) Short-circuit to ground, one amplifier per package.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM) ±400
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
(V+) – (V–) Supply voltage ±0.9 (1.8) ±2.5 (5) ±2.75 (5.5) V
TA Specified temperature –40 25 125 °C

7.4 Thermal Information: OPA330

THERMAL METRIC(1) OPA330 UNIT
D (SOIC) DBV (SOT-23) DCK (SC70) YFF (DSBGA)
8 PINS 5 PINS 5 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance 140.1 220.8 298.4 130 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 89.8 97.5 65.4 54 °C/W
RθJB Junction-to-board thermal resistance 80.6 61.7 97.1 51 °C/W
ψJT Junction-to-top characterization parameter 28.7 7.6 0.8 1 °C/W
ψJB Junction-to-board characterization parameter 80.1 61.1 95.5 50 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Thermal Information: OPA2330

THERMAL METRIC(1) OPA2330 UNIT
D (SOIC) DGK (VSSOP) DRB (SON)
8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 124 180.3 46.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 73.7 48.1 26.3 °C/W
RθJB Junction-to-board thermal resistance 64.4 100.9 22.2 °C/W
ψJT Junction-to-top characterization parameter 18 2.4 1.6 °C/W
ψJB Junction-to-board characterization parameter 63.9 99.3 22.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 10.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.6 Thermal Information: OPA4330

THERMAL METRIC(1) OPA4330 UNIT
D (SOIC) PW (TSSOP) RGY (VQFN)
14 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 83.8 120.8 49.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 70.7 34.3 75.3 °C/W
RθJB Junction-to-board thermal resistance 59.5 62.8 61.9 °C/W
ψJT Junction-to-top characterization parameter 11.6 1 1.2 °C/W
ψJB Junction-to-board characterization parameter 37.7 56.5 19.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.7 Electrical Characteristics

at TA = 25°C, RL = 10 kΩ connected to midsupply, VS = 1.8 V to 5.5 V, and VCM = VOUT = midsupply (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VS = 5 V 8 50 µV
dVOS/dT Input offset voltage versus temperature At TA = –40°C to +125°C 0.02 0.25 µV/°C
PSRR Input offset voltage versus power supply At TA = –40°C to +125°C 1 10 µV/V
Long-term stability(1) VS = 1.8 V to 5.5 V See (1)
Channel separation, dc 0.1 µV/V
INPUT BIAS CURRENT
IB Input bias current At 25°C ±200 ±500 pA
OPA330YFF, OPA4330 ±70 ±300 pA
At TA = –40°C to +125°C ±300 pA
IOS Input offset current At 25°C ±400 ±1000 pA
OPA330YFF, OPA4330 ±140 ±600 pA
NOISE
en Input voltage noise density f = 1 kHz 55 nV/√Hz
Input voltage noise f = 0.01 Hz to 1 Hz 0.3 µVPP
f = 0.1 Hz to 10 Hz 1.1 µVPP
in Input current noise f = 10 Hz 100 fA/√Hz
INPUT VOLTAGE RANGE
VCM Common-mode voltage range (V–) – 0.1 (V+) + 0.1 V
CMRR Common-mode rejection ratio At TA = –40°C to +125°C,
(V–) – 0.1 V < VCM < (V+) + 0.1 V
100 115 dB
At TA = –40°C to +125°C,
(V–) – 0.1 V < VCM < (V+) + 0.1 V,
VS = 5.5 V
100 115 dB
OPA330YFF, OPA4330 100 115 dB
INPUT CAPACITANCE
Differential 2 pF
Common-mode 4 pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain At TA = –40°C to +125°C,
(V–) + 100 mV < VO < (V+) – 100 mV, RL = 10 kΩ
100 115 dB
FREQUENCY RESPONSE
GBW Gain-bandwidth product CL = 100 pF 350 kHz
SR Slew rate G = +1 0.16 V/µs
OUTPUT
Voltage output swing from rail At TA = –40°C to +125°C 30 100 mV
ISC Short-circuit current ±5 mA
CL Capacitive load drive See Typical Characteristics
Open-loop output impedance f = 350 kHz, IO = 0 mA 2
POWER SUPPLY
VS Specified voltage range 1.8 5.5 V
IQ Quiescent current per amplifier At TA = –40°C to +125°C, IO = 0 mA 21 35 µA
Turnon time VS = 5 V 100 µs
(1) 300-hour life test at 150°C demonstrated randomly distributed variation of approximately 1 µV.

7.8 Typical Characteristics

At TA = 25°C, CL = 0 pF, RL = 10 kΩ connected to midsupply, and VCM = VOUT = midsupply, unless otherwise noted.

Table 1. Table of Graphs

DESCRIPTION FIGURE NO.
Offset Voltage Production Distribution Figure 1
Open-Loop Gain vs Frequency Figure 2
Common-Mode Rejection Ratio vs Frequency Figure 3
Power-Supply Rejection Ratio vs Frequency Figure 4
Output Voltage Swing vs Output Current Figure 5
Input Bias Current vs Common-Mode Voltage Figure 6
Input Bias Current vs Temperature Figure 7
Quiescent Current vs Temperature Figure 8
Large-Signal Step Response Figure 9
Small-Signal Step Response Figure 10
Positive Overvoltage Recovery Figure 11
Negative Overvoltage Recovery Figure 12
Settling Time vs Closed-Loop Gain Figure 13
Small-Signal Overshoot vs Load Capacitance Figure 14
0.1-Hz to 10-Hz Noise Figure 15
Current and Voltage Noise Spectral Density vs Frequency Figure 16
Input Bias Current vs Input Differential Voltage Figure 17
OPA330 OPA2330 OPA4330 tc_histo_bos432.gif
Figure 1. Offset Voltage Production Distribution
OPA330 OPA2330 OPA4330 tc_cmrr-frq_bos351.gif
Figure 3. Common-Mode Rejection Ratio vs Frequency
OPA330 OPA2330 OPA4330 tc_vos-io_bos351.gif
Figure 5. Output Voltage Swing vs Output Current
OPA330 OPA2330 OPA4330 tc_ib-tmp_bos432.gif
Figure 7. Input Bias Current vs Temperature
OPA330 OPA2330 OPA4330 tc_resp_lg_bos351.gif
Figure 9. Large-Signal Step Response
OPA330 OPA2330 OPA4330 tc_pos_recov_bos432.gif
Figure 11. Positive Overvoltage Recovery
OPA330 OPA2330 OPA4330 tc_tim-cloop_bos351.gif
Figure 13. Settling Time vs Closed-Loop Gain
OPA330 OPA2330 OPA4330 tc_noise_bos351.gif
Figure 15. 0.1-Hz to 10-Hz Noise
OPA330 OPA2330 OPA4330 tc_ibc_diff_v_bos432.gif
Figure 17. Input Bias Current vs Input Differential Voltage
OPA330 OPA2330 OPA4330 tc_oloop-frq_bos351.gif
Figure 2. Open-Loop Gain vs Frequency
OPA330 OPA2330 OPA4330 tc_psrr-frq_bos351.gif
Figure 4. Power-Supply Rejection Ratio vs Frequency
OPA330 OPA2330 OPA4330 tc_ib-vcm_bos342.gif
Figure 6. Input Bias Current vs Common-Mode Voltage
OPA330 OPA2330 OPA4330 tc_iq-tmp_bos342.gif
Figure 8. Quiescent Current vs Temperature
OPA330 OPA2330 OPA4330 tc_resp_sm_bos351.gif
Figure 10. Small-Signal Step Response
OPA330 OPA2330 OPA4330 tc_neg_recov_bos432.gif
Figure 12. Negative Overvoltage Recovery
OPA330 OPA2330 OPA4330 tc_ovrshoot-cl_bos351.gif
Figure 14. Small-Signal Overshoot vs Load Capacitance
OPA330 OPA2330 OPA4330 tc_noise-frq_bos351.gif
Figure 16. Current and Voltage Noise Spectral Density vs Frequency