SLOS713I January   2011  – August 2016 OPA2835 , OPA835

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. OPA835-Related Devices
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: OPA835
    5. 7.5 Thermal Information: OPA2835
    6. 7.6 Electrical Characteristics: VS = 2.7 V
    7. 7.7 Electrical Characteristics: VS = 5 V
    8. 7.8 Typical Characteristics: VS = 2.7 V
    9. 7.9 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
      2. 8.3.2 Output Voltage Range
      3. 8.3.3 Power-Down Operation
      4. 8.3.4 Low-Power Applications and the Effects of Resistor Values on Bandwidth
      5. 8.3.5 Driving Capacitive Loads
    4. 8.4 Device Functional Modes
      1. 8.4.1 Split-Supply Operation (±1.25 V to ±2.75 V)
      2. 8.4.2 Single-Supply Operation (2.5 V to 5.5 V)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Noninverting Amplifier
      2. 9.1.2  Inverting Amplifier
      3. 9.1.3  Instrumentation Amplifier
      4. 9.1.4  Attenuators
      5. 9.1.5  Single-Ended to Differential Amplifier
      6. 9.1.6  Differential to Single-Ended Amplifier
      7. 9.1.7  Differential-to-Differential Amplifier
      8. 9.1.8  Gain Setting With OPA835 RUN Integrated Resistors
      9. 9.1.9  Pulse Application With Single-Supply
      10. 9.1.10 ADC Driver Performance
    2. 9.2 Typical Application
      1. 9.2.1 Audio Frequency Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Active Filters
        1. 9.2.2.1 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
      2. 12.2.2 Related Links
      3. 12.2.3 Receiving Notification of Documentation Updates
      4. 12.2.4 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

1 Features

  • Ultra-Low Power
    • Supply Voltage: 2.5 V to 5.5 V
    • Quiescent Current: 250 µA/ch (Typical)
    • Power Down Mode: 0.5 µA (Typical)
  • Bandwidth: 56 MHz (AV = 1 V/V)
  • Slew Rate: 160 V/µs
  • Rise Time: 10 ns (2 VSTEP)
  • Settling Time (0.1%): 55 ns (2 VSTEP)
  • Overdrive Recovery Time: 200 ns
  • SNR: 0.00015% (–116.4 dBc) at 1 kHz (1 VRMS)
  • THD: 0.00003% (–130 dBc) at 1 kHz (1 VRMS)
  • HD2/HD3: –70 dBc/–73 dBc at 1 MHz (2 VPP)
  • Input Voltage Noise: 9.3 nV/√Hz (f = 100 kHz)
  • Input Offset Voltage: 100 µV (±500-µV Maximum)
  • CMRR: 113 dB
  • Output Current Drive: 40 mA
  • RRO: Rail-to-Rail Output
  • Input Voltage Range: –0.2 V to 3.9 V
    (5-V Supply)
  • Operating Temperature Range:
    –40°C to +125°C

2 Applications

  • Low-Power Signal Conditioning
  • Audio ADC Input Buffer
  • Low-Power SAR and ΔΣ ADC Driver
  • Portable Systems
  • Low-Power Systems
  • High-Density Systems
  • Ultrasonic Flow Meter

3 Description

The OPA835 and OPA2835 devices (OPAx835) are single and dual ultra-low-power, rail-to-rail output, negative-rail input, voltage-feedback (VFB) operational amplifiers designed to operate over a power supply range of 2.5-V to 5.5-V with a single supply, or ±1.25-V to ±2.75-V with a dual supply. Consuming only 250 µA per channel and with a unity gain bandwidth of 56 MHz, these amplifiers set an industry-leading performance-to-power ratio for rail-to-rail amplifiers.

For battery-powered, portable applications where power is of key importance, the low power consumption and high-frequency performance of the OPA835 and OPA2835 devices offers performance versus power that is not attainable in other devices. Coupled with a power-savings mode to reduce current to < 1.5 μA, these devices offer an attractive solution for high-frequency amplifiers in battery-powered applications.

The OPA835 RUN package option includes integrated gain-setting resistors for the smallest possible footprint on a printed-circuit-board (approximately 2.00 mm × 2.00 mm). By adding circuit traces on the PCB, gains of +1, –1, –1.33, +2, +2.33, –3, +4, –4, +5, –5.33, +6.33, –7, +8 and inverting attenuations of –0.1429, –0.1875, –0.25, –0.33, –0.75 can be achieved. See Table 3 and Table 4 for details.

The OPA835 and OPA2835 devices are characterized for operation over the extended industrial temperature range of –40°C to +125°C.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
OPA835 SOT-23 (6) 2.90 mm × 1.60 mm
QFN (10) 2.00 mm × 2.00 mm
OPA2835 SOIC (8) 4.90 mm × 3.91 mm
VSSOP (10) 3.00 mm × 3.00 mm
UQFN (10) 2.00 mm × 2.00 mm
QFN (10) 2.00 mm × 2.00 mm
  1. For all available packages, see the package option addendum at the end of the data sheet.

Harmonic Distortion vs Frequency

OPA835 OPA2835 tcB13_5V_los713.gif