SLAS759B August   2012  – January 2016 PCM5141 , PCM5142

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
    1. 6.1 Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Timing Requirements: SCK Input
    7. 7.7  Timing Requirements: PCM Audio Data
      1. 7.7.1 Timing Requirements: I2S Master
    8. 7.8  Timing Requirements: XSMT
    9. 7.9  Switching Characteristics
    10. 7.10 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Terminology
      2. 8.3.2 Audio Data Interface
        1. 8.3.2.1 Audio Serial Interface
        2. 8.3.2.2 PCM Audio Data Formats
        3. 8.3.2.3 Zero Data Detect
      3. 8.3.3 XSMT Pin (Soft Mute / Soft Un-Mute)
      4. 8.3.4 Audio Processing
        1. 8.3.4.1 PCM514x Audio Processing Options
          1. 8.3.4.1.1 Overview
          2. 8.3.4.1.2 miniDSP Instruction Register
          3. 8.3.4.1.3 Digital Output
          4. 8.3.4.1.4 Software
        2. 8.3.4.2 Interpolation Filter
        3. 8.3.4.3 Fixed Audio Processing Flow (Program 5)
          1. 8.3.4.3.1 Processing Blocks - Detailed Descriptions
          2. 8.3.4.3.2 Biquad Section
          3. 8.3.4.3.3 Dynamic Range Compression
          4. 8.3.4.3.4 Stereo Mixer
          5. 8.3.4.3.5 Stereo Multiplexer
          6. 8.3.4.3.6 Mono Mixer
          7. 8.3.4.3.7 Master Volume Control
          8. 8.3.4.3.8 Miscellaneous Coefficients
      5. 8.3.5 DAC Outputs
        1. 8.3.5.1 Analog Outputs
        2. 8.3.5.2 Recommended Output Filter for the PCM514x
        3. 8.3.5.3 Choosing Between VREF and VCOM Modes
          1. 8.3.5.3.1 Voltage Reference and Output Levels
          2. 8.3.5.3.2 Mode Switching Sequence, from VREF Mode to VCOM Mode
        4. 8.3.5.4 Digital Volume Control
          1. 8.3.5.4.1 Emergency Ramp-Down
        5. 8.3.5.5 Analog Gain Control
      6. 8.3.6 Reset and System Clock Functions
        1. 8.3.6.1 Clocking Overview
        2. 8.3.6.2 Clock Slave Mode With Master and System Clock (SCK) Input (4 Wire I2S)
        3. 8.3.6.3 Clock Slave Mode With BCK PLL to Generate Internal Clocks (3-Wire PCM)
        4. 8.3.6.4 Clock Generation Using the PLL
        5. 8.3.6.5 PLL Calculation
          1. 8.3.6.5.1 Examples:
            1. 8.3.6.5.1.1 Recommended PLL Settings
        6. 8.3.6.6 Clock Master Mode from Audio Rate Master Clock
        7. 8.3.6.7 Clock Master from a Non-Audio Rate Master Clock
    4. 8.4 Device Functional Modes
      1. 8.4.1 Choosing a Control Mode
        1. 8.4.1.1 Software Control
          1. 8.4.1.1.1 SPI Interface
            1. 8.4.1.1.1.1 Register Read and Write Operation
          2. 8.4.1.1.2 I2C Interface
            1. 8.4.1.1.2.1 Slave Address
            2. 8.4.1.1.2.2 Register Address Auto-Increment Mode
            3. 8.4.1.1.2.3 Packet Protocol
            4. 8.4.1.1.2.4 Write Register
            5. 8.4.1.1.2.5 Read Register
            6. 8.4.1.1.2.6 Timing Characteristics
      2. 8.4.2 VREF and VCOM Modes
    5. 8.5 Programming
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Distribution and Requirements
    2. 10.2 Recommended Powerdown Sequence
      1. 10.2.1 XSMT = 0
      2. 10.2.2 Clock Error Detect
      3. 10.2.3 Planned Shutdown
      4. 10.2.4 Unplanned Shutdown
    3. 10.3 External Power Sense Undervoltage Protection Mode
    4. 10.4 Power-On Reset Function
      1. 10.4.1 Power-On Reset, DVDD 3.3-V Supply
      2. 10.4.2 Power-On Reset, DVDD 1.8-V Supply
    5. 10.5 PCM514x Power Modes
      1. 10.5.1 Setting Digital Power Supplies and I/O Voltage Rails
      2. 10.5.2 Power Save Modes
      3. 10.5.3 Power Save Parameter Programming
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Register Maps
    1. 12.1 PCM514x Register Map
      1. 12.1.1 Detailed Register Descriptions
        1. 12.1.1.1 Register Map Summary
        2. 12.1.1.2 Page 0 Registers
        3. 12.1.1.3 Page 1 Registers
        4. 12.1.1.4 Page 44 Registers
        5. 12.1.1.5 Page 253 Registers
      2. 12.1.2 PLL Tables for Software Controlled Devices
      3. 12.1.3 Coefficient Data Formats
      4. 12.1.4 Power Down and Reset Behavior
  13. 13Device and Documentation Support
    1. 13.1 Development Support
    2. 13.2 Documentation Support
    3. 13.3 Related Links
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage AVDD, CPVDD, DVDD –0.3 3.9 V
LDO with DVDD at 1.8 V –0.3 2.25
Digital input voltage DVDD at 1.8 V –0.3 2.25 V
DVDD at 3.3 V –0.3 3.9
Analog input voltage –0.3 3.9 V
Operating junction temperature, TJ –40 130 °C
Storage temperature, Tstg –65 150 °C

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
AVDD Analog power supply voltage Referenced to AGND(1) VCOM mode 3 3.3 3.46 V
VREF mode 3.2 3.3 3.46
DVDD Digital power supply voltage Referenced to DGND(1) 1.8 V DVDD 1.65 1.8 1.95 V
3.3 V DVDD 3.1 3.3 3.46
CPVDD Charge pump supply voltage Referenced to CPGND(1) 3.1 3.3 3.46 V
MCLK Master clock frequency 50 MHz
LOL, LOR Stereo line output load resistance 1 10
CLOUT Digital output load capacitance 10 pF
TJ Operating junction temperature –40 130 °C
(1) All grounds on board are tied together; they must not differ in voltage by more than 0.2-V maximum, for any combination of ground signals.

7.4 Thermal Information

THERMAL METRIC(1) PCM512x UNIT
RHB (TSSOP)
32 PINS
RθJA Junction-to-ambient thermal resistance 72.2 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 17.5 °C/W
RθJB Junction-to-board thermal resistance 35.0 °C/W
ψJT Junction-to-top characterization parameter 0.4 °C/W
ψJB Junction-to-board characterization parameter 34.5 °C/W
(1) For more information about trdational and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

TA = 25°C, AVDD = CPVDD = DVDD = 3.3 V, fS = 48 kHz, system clock = 512 fS and 24-bit data (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 16 24 32 Bits
DIGITAL INPUT/OUTPUT
Logic Family: 3.3-V LVCMOS Compatible
VIH Input logic level, high 0.7 × DVDD V
VIL Input logic level, low 0.3 × DVDD V
IIH Input logic current, high VIN = VDD 10 µA
IIL Input logic current, low VIN = 0 V –10 µA
VOH Output logic level, high IOH = –4 mA 0.8 × DVDD V
VOL Output logic level, low IOL = 4 mA 0.22 × DVDD V
Logic Family 1.8-V LVCMOS Compatible
VIH Input logic level, high 0.7 × DVDD V
VIL Input logic level, low 0.3 × DVDD V
IIH Input logic current, high VIN = VDD 10 µA
IIL Input logic current, low VIN = 0 V –10 µA
VOH Output logic level, high IOH = –2 mA 0.8 × DVDD V
VOL Output logic level, low IOL = 2 mA 0.22 × DVDD V
DYNAMIC PERFORMANCE (PCM MODE)(1)(2)
THD+N at –1 dB(2) fS = 48 kHz –93 –83 dB
fS = 96 kHz –93
fS = 192 kHz –93
Dynamic range(2) EIAJ, A-weighted, fS = 48 kHz 108 112 dB
EIAJ, A-weighted, fS = 96 kHz 112
EIAJ, A-weighted, fS = 192 kHz 112
Signal-to-noise ratio(2) EIAJ, A-weighted, fS = 48 kHz 112 dB
EIAJ, A-weighted, fS = 96 kHz 112
EIAJ, A-weighted, fS = 192 kHz 112
Signal-to-noise ratio with analog mute(2)(3) EIAJ, A-weighted, fS = 48 kHz 113 123 dB
EIAJ, A-weighted, fS = 96 kHz 113 123
EIAJ, A-weighted, fS = 192 kHz 113 123
Channel separation fS = 48 kHz 100 / 95 109 / 103 dB
fS = 96 kHz 100 / 95 109 / 103
fS = 192 kHz 100 / 95 109 / 103
ANALOG OUTPUT
Single-ended output voltage 2.1 VRMS
Gain error –6 ±2.0 6 % of FSR
Gain mismatch, channel-to-channel –6 ±0.5 6 % of FSR
Load impedance 5
FILTER CHARACTERISTICS–1: NORMAL (8x)
Pass band 0.45 × fS kHz
Stop band 0.55 × fS kHz
Stop band attenuation –60 dB
Pass-band ripple ±0.02 dB
Delay time 20 × tS s
FILTER CHARACTERISTICS–2: LOW LATENCY (8x)
Pass band 0.47 × fS kHz
Stop band 0.55 × fS kHz
Stop band attenuation –52 dB
Pass-band ripple ±0.0001 dB
Delay time 3.5 × tS s
FILTER CHARACTERISTICS–3: ASYMMETRIC FIR (8x)
Pass band 0.4 × fS kHz
Stop band 0.72 × fS kHz
Stop band attenuation –52 dB
Pass-band ripple ±0.05 dB
Delay time 1.2 × tS s
FILTER CHARACTERISTICS–4: HIGH-ATTENUATION (8x)
Pass band 0.45 × fS kHz
Stop band 0.45 × fS kHz
Stop band attenuation –100 dB
Pass-band ripple ±0.0005 dB
Delay time 33.7 × tS s
POWER SUPPLY REQUIREMENTS
DVDD Digital supply voltage Target DVDD = 1.8 V 1.65 1.8 1.95 VDC
DVDD Digital supply voltage Target DVDD = 3.3 V 3 3.3 3.6 VDC
AVDD Analog supply voltage 3 3.3 3.6 VDC
CPVDD Charge-pump supply voltage 3 3.3 3.6 VDC
IDD DVDD supply current at 1.8 V fS = 48 kHz, input is bipolar zero data 11 14 mA
fS = 96 kHz, input is bipolar zero data 12
fS = 192 kHz, input is bipolar zero data 14
IDD DVDD supply current at 1.8 V fS = 48 kHz, input is 1 kHz – 1 dBFS data 11 14 mA
fS = 96 kHz, input is 1 kHz – 1 dBFS data 12
fS = 192 kHz, input is 1 kHz – 1 dBFS data 14
IDD DVDD supply current at 1.8 V(4) fS = N/A, power-down mode 0.3 0.6 mA
IDD DVDD supply current at 3.3 V fS = 48 kHz, input is bipolar zero data 12 15 mA
fS = 96 kHz, input is bipolar zero data 13
fS = 192 kHz, input is bipolar zero data 15
IDD DVDD supply current at 3.3 V fS = 48 kHz, input is 1 kHz – 1 dBFS data 12 15 mA
fS = 96 kHz, input is 1 kHz – 1 dBFS data 13
fS = 192 kHz, input is 1 kHz – 1 dBFS data 15
IDD DVDD supply current at 3.3 V(4) fS = N/A, power-down mode 0.5 0.8 mA
ICC AVDD + CPVDD supply current fS = 48 kHz, input is bipolar zero data 11 16 mA
fS = 96 kHz, input is bipolar zero data 11
fS = 192 kHz, input is bipolar zero data 11
ICC AVDD + CPVDD supply current fS = 48 kHz, input is 1 kHz – 1 dBFS data 24 32 mA
fS = 96 kHz, input is 1 kHz – 1 dBFS data 24
fS = 192 kHz, input is 1 kHz – 1 dBFS data 24
ICC AVDD + CPVDD supply current(4) fS = N/A, power-down mode 0.2 0.4 mA
Power dissipation, DVDD = 1.8 V fS = 48 kHz, input is bipolar zero data 59.4 78 mW
fS = 96 kHz, input is bipolar zero data 61.2
fS = 192 kHz, input is bipolar zero data 64.8
Power dissipation, DVDD = 1.8 V fS = 48 kHz, input is 1 kHz – 1 dBFS data 99 130.8 mW
fS = 96 kHz, input is 1 kHz – 1 dBFS data 100.8
fS = 192 kHz, input is 1 kHz – 1 dBFS data 104.4
Power dissipation, DVDD = 1.8 V(4) fS = N/A, power-down mode 1.2 mW
Power dissipation, DVDD = 3.3 V fS = 48 kHz, input is bipolar zero data 79.2 103 mW
fS = 96 kHz, input is bipolar zero data 82.5
fS = 192 kHz, input is bipolar zero data 89.1
Power dissipation, DVDD = 3.3 V fS = 48 kHz, input is 1 kHz – 1 dBFS data 118.8 155 mW
fS = 96 kHz, input is 1 kHz – 1 dBFS data 122.1
fS = 192 kHz, input is 1 kHz – 1 dBFS data 128.7
Power dissipation, DVDD = 3.3 V(4) fS = N/A, power-down mode 2.3 4 mW
(1) Filter condition: THD+N: 20-Hz HPF, 20-kHz AES17 LPF Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted Channel separation: 20-Hz HPF, 20-kHz AES17 LPF Analog performance specifications are measured using the System Two Cascade™ audio measurement system by Audio Precision™ in the RMS mode.
(2) Output load is 10 kΩ, with 470-Ω output resistor and a 2.2-nF shunt capacitor (see Recommended Output Filter for the PCM514x).
(3) Assert XSMT or both L-ch and R-ch PCM data are BPZ
(4) Power-down mode, with LRCK, BCK, and SCK halted at low level.

7.6 Timing Requirements: SCK Input

Figure 1 shows the timing requirements for the system clock input. For optimal performance, use a clock source with low phase jitter and noise.
MIN NOM MAX UNIT
tSCY System clock pulse cycle time 20 1000 ns
tSCKH System clock pulse width, high DVDD = 1.8 V 8 ns
DVDD = 3.3 V 9
tSCKL System clock pulse width, low DVDD = 1.8 V 8 ns
DVDD = 3.3 V 9

7.7 Timing Requirements: PCM Audio Data

MIN NOM MAX UNIT
tBCY BCK Pulse Cycle Time 40 ns
tBCL BCK Pulse Width LOW 16 ns
tBCH BCK Pulse Width HIGH 16 ns
tBL BCK Rising Edge to LRCK Edge 8 ns
tBCK BCK frequency at DVDD = 3.3 V 24.576 MHz
tBCK(1.8V) BCK frequency at DVDD = 1.8 V 12.288 MHz
tLB LRCK Edge to BCK Rising Edge 8 ns
tDS DATA Set Up Time 8 ns
tDH DATA Hold Time 8 ns
tDOD DATA delay time from BCK falling edge 15 ns

7.7.1 Timing Requirements: I2S Master

MIN NOM MAX UNIT
tBCY BCK Pulse Cycle Time 40 ns
tBCL BCK Pulse Width LOW 16 ns
tBCH BCK Pulse Width HIGH 16 ns
tBCK BCK frequency at DVDD = 3.3 V 24.576 MHz
tBCK(1.8V) BCK frequency at DVDD = 1.8 V 12.288 MHz
tLRD LRCKx delay time from BCKx falling edge –10 20 ns
tDS DATA Set Up Time 8 ns
tDH DATA Hold Time 8 ns
tDOD DATA delay time from BCK falling edge at DVDD = 3.3 V 15 ns
tDOD(1.8V) DATA delay time from BCK falling edge at DVDD = 1.8 V 20 ns

7.8 Timing Requirements: XSMT

MIN NOM MAX UNIT
tr Rise time 20 ns
tf Fall time 20 ns

7.9 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DATA FORMAT (PCM MODE)
Audio data interface format I2S, left-justified, right-justified, and TDM
Audio data bit length 16, 20, 24, 32-bit acceptable
Audio data format MSB first, twos-complement
fS Sampling frequency(1) 8 384 kHz
CLOCKS
System clock frequency 64, 128, 192, 256, 384, 512, 768, 1024, 1152, 1536, 2048, or 3072
fSCK, up to 50 Mhz
PLL input frequency (2) Clock divider uses fractional divide
D > 0, P=1
6.7 20 MHz
Clock divider uses integer divide
D = 0, P=1
1 20 MHz
(1) One sample time is defined as the reciprocal of the sampling frequency. 1 × tS = 1 / fS
(2) With the appropriate P coefficient setting, the PLL accepts up to 50 MHz. This clock is then divided to meet the ≤ 20-MHz requirement. See PLL Calculation.
PCM5141 PCM5142 f_pcm51xx_td_sck_req.gif Figure 1. Timing Requirements for SCK Input
PCM5141 PCM5142 f_pcm512x4x_td_pcm_aud_slv.gif Figure 2. PCM514x Serial Audio Timing - Slave
PCM5141 PCM5142 f_pcm512x4x_td_pcm_aud_mstr.gif Figure 3. PCM514x Serial Audio Timing - I2S Master
PCM5141 PCM5142 f_pcm51xx_td_xsmt_soft_mute.gif Figure 4. XSMT Timing for Soft Mute and Soft Un-Mute

7.10 Typical Characteristics

Consumer grade (non-Q1) devices are specified for TA = 25°C, AVDD = CPVDD = DVDD = 3.3 V, fS = 48 kHz, system clock = 512 fS and 24-bit data (unless otherwise noted).
PCM5141 PCM5142 thd_n_input_level_5101.gif
Figure 5. PCM5141 THD+N vs Input Level
PCM5141 PCM5142 fft_-60dB_5101.gif
Figure 7. PCM5141 FFT Plot Using a 1-kHz Tone
(–60 dBFS) from DC to 20 kHz
PCM5141 PCM5142 fft_bpz_5101.gif
Figure 9. PCM5141 FFT Plot at Bipolar Zero Data (BPZ)
PCM5141 PCM5142 fft_bpz_amute_5101.gif
Figure 11. PCM5141 FFT Plot at BPZ With Analog Mute (AMUTE)
PCM5141 PCM5142 fft_-60_sub_300kHz_5101.gif
Figure 13. PCM5141 FFT Plot Using a 1-kHz Tone
(–60 dBFS) from DC to 300 kHz
PCM5141 PCM5142 thd_n_input_level_5102.gif
Figure 6. PCM5142 THD+N vs Input Level
PCM5141 PCM5142 fft_-60dB_5102.gif
Figure 8. PCM5142 FFT Plot Using a 1-kHz Tone
(–60 dBFS) from DC to 20 kHz
PCM5141 PCM5142 fft_bpz_5102.gif
Figure 10. PCM5142 FFT Plot at BPZ
PCM5141 PCM5142 fft_bpz_amute_5102.gif
Figure 12. PCM5142 FFT Plot at BPZ With Analog Mute (AMUTE)
PCM5141 PCM5142 fft_-60_sub_300kHz_5102.gif
Figure 14. PCM5142 FFT Plot Using a 1-kHz Tone
(–60 dBFS) from DC to 300 kHz