SLLS889C June   2008  – August 2016 SN65HVD1040A-Q1


  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Power Dissipation Characteristics
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Operating Modes
        1. Bus States by Mode
        2. Normal Mode
        3. Standby Mode and RXD Wake-Up Request
      2. 9.3.2 Protection Features
        1. TXD Dominant State Time-Out
        2. Thermal Shutdown
        3. Undervoltage Lockout and Unpowered Device
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Using With 3.3-V Microcontrollers
      2. 10.1.2 Using SPLIT With Split Termination
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
        1. Bus Loading, Length, and Number of Nodes
        2. CAN Termination
        3. Loop Propagation Delay
      2. 10.2.2 Detailed Design Procedure
        1. Transient Voltage Suppresser (TVS) Diodes
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 ESD Protection
  13. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Community Resource
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

5 Description (continued)

Designed for operation in especially harsh environments, the SN65HVD1040A-Q1 features cross-wire, overvoltage, and loss of ground protection from –27 V to 40 V, overtemperature protection, a –12-V to 12-V common-mode range, and can withstand voltage transients according to ISO 7637.

STB (pin 8) provides two different modes of operation: high-speed mode or low-current standby mode. The high-speed mode of operation is selected by connecting STB (pin 8) to ground.

If a high logic level is applied to the STB pin of the SN65HVD1040A-Q1, the device enters a low-current standby mode, while the receiver remains active in a low-power bus-monitor standby mode.

In the low-current standby mode, a dominant bit greater than 5 μs on the bus is passed by the bus-monitor circuit to the receiver output. The local protocol controller may then reactivate the device when it needs to transmit to the bus.

A dominant time-out circuit in the SN65HVD1040A-Q1 prevents the driver from blocking network communication with a hardware or software failure. The time-out circuit is triggered by a falling edge on TXD (pin 1). If no rising edge is seen before the time-out constant of the circuit expires, the driver is disabled. The circuit is then reset by the next rising edge on TXD.

SPLIT (pin 5) is available as a VCC/2 common-mode bus voltage bias for a split-termination network (see Application and Implementation).