SCES530H December   2003  – December 2014 SN74AVC1T45

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Switching Characteristics: VCCA = 1.2 V
    7. 7.7  Switching Characteristics: VCCA = 1.5 V ± 0.1 V
    8. 7.8  Switching Characteristics: VCCA = 1.8 V ± 0.15 V
    9. 7.9  Switching Characteristics: VCCA = 2.5 V ± 0.2 V
    10. 7.10 Switching Characteristics: VCCA = 3.3 V ± 0.3 V
    11. 7.11 Operating Characteristics
    12. 7.12 Typical Characteristics
      1. 7.12.1 Typical Propagation Delay (A to B) vs Load Capacitance
      2. 7.12.2 Typical Propagation Delay (A to B) vs Load Capacitance
      3. 7.12.3 Typical Propagation Delay (A to B) vs Load Capacitance
      4. 7.12.4 Typical Propagation Delay (A to B) vs Load Capacitance
      5. 7.12.5 Typical Propagation Delay (A to B) vs Load Capacitance
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range
      2. 9.3.2 Support High-Speed Translation
      3. 9.3.3 Ioff Supports Partial-Power-Down Mode Operation
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Enable Times
    2. 10.2 Typical Applications
      1. 10.2.1 Unidirectional Logic Level-Shifting Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Bidirectional Logic Level-Shifting Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Power-Up Considerations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Trademarks
    2. 13.2 Electrostatic Discharge Caution
    3. 13.3 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DBV|6
  • DRL|6
  • YZP|6
  • DCK|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VCCA,
VCCB
Supply voltage –0.5 4.6 V
VI Input voltage (2) I/O ports (A port) –0.5 4.6 V
I/O ports (B port) –0.5 4.6
Control inputs –0.5 4.6
VO Voltage applied to any output in the high-impedance or power-off state(2) A port –0.5 4.6 V
B port –0.5 4.6
VO Voltage applied to any output in the high or low state(2)(3) A port –0.5 VCCA + 0.5 V
B port –0.5 VCCB + 0.5
IIK Input clamp current VI < 0 –50 mA
IOK Output clamp current VO < 0 –50 mA
IO Continuous output current –50 50 mA
Continuous current through VCCA, VCCB, or GND –100 100 mA
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current ratings are observed.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model, per A115-A 200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(3)(4)(5)
VCCI VCCO MIN MAX UNIT
VCCA Supply voltage 1.2 3.6 V
VCCB Supply voltage 1.2 3.6 V
VIH High-level input voltage Data inputs 1.2 V to 1.95 V VCCI × 0.65 V
1.95 V to 2.7 V 1.6
2.7 V to 3.6 V 2
VIL Low-level input voltage Data inputs 1.2 V to 1.95 V VCCI × 0.35 V
1.95 V to 2.7 V 0.7
2.7 V to 3.6 V 0.8
VIH High-level input voltage DIR
(referenced to VCCA)
1.2 V to 1.95 V VCCA × 0.65 V
1.95 V to 2.7 V 1.6
2.7 V to 3.6 V 2
VIL Low-level input voltage DIR
(referenced to VCCA)
1.2 V to 1.95 V VCCA × 0.35 V
1.95 V to 2.7 V 0.7
2.7 V to 3.6 V 0.8
VI Input voltage 0 3.6 V
VO Output voltage Active state 0 VCCO V
3-state 0 3.6
IOH High-level output current 1.2 V –3 mA
1.4 V to 1.6 V –6
1.65 V to 1.95 V –8
2.3 V to 2.7 V –9
3 V to 3.6 V –12
IOL Low-level output current 1.2 V 3 mA
1.4 V to 1.6 V 6
1.65 V to 1.95 V 8
2.3 V to 2.7 V 9
3 V to 3.6 V 12
Δt/Δv Input transition rise or fall rate 5 ns/V
TA Operating free-air temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) SN74AVC1T45 UNIT
DBV DCK DRL YZP
6 PINS
RθJA Junction-to-ambient thermal resistance 24.3 290.7 236.2 130 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 174.7 97.0 97.6 54
RθJB Junction-to-board thermal resistance 92.4 99.2 71.0 51
ψJT Junction-to-top characterization parameter 61.1 2.1 8.3 1
ψJB Junction-to-board characterization parameter 92.0 98.4 70.8 50
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A N/A N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics(1)(2)

over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS VCCA VCCB TA = 25°C –40°C to 85°C UNIT
MIN TYP MAX MIN MAX
VOH IOH = –100 μA VI = VIH 1.2 V to 3.6 V 1.2 V to 3.6 V VCCO
– 0.2
V
IOH = –3 mA 1.2 V 1.2 V 0.95
IOH = –6 mA 1.4 V 1.4 V 1.05
IOH = –8 mA 1.65 V 1.65 V 1.2
IOH = –9 mA 2.3 V 2.3 V 1.75
IOH = –12 mA 3 V 3 V 2.3
VOL IOL = 100 μA VI = VIL 1.2 V to 3.6 V 1.2 V to 3.6 V 0.2 V
IOL = 3 mA 1.2 V 1.2 V 0.15
IOL = 6 mA 1.4 V 1.4 V 0.35
IOL = 8 mA 1.65 V 1.65 V 0.45
IOL = 9 mA 2.3 V 2.3 V 0.55
IOL = 12 mA 3 V 3 V 0.7
II DIR VI = VCCA or GND 1.2 V to 3.6 V 1.2 V to 3.6 V –0.25 ±0.025 0.25 –1 1 μA
Ioff A port VI or VO = 0 to 3.6 V 0 V 0 to 3.6 V –1 ±0.1 1 –5 5 μA
B port 0 to 3.6 V 0 V –1 ±0.1 1 –5 5
IOZ B port VO = VCCO or GND,
VI = VCCI or GND
0 V 3.6 V –2.5 ±0.5 2.5 –5 5 μA
A port 3.6 V 0 V –2.5 ±0.5 2.5 –5 5
ICCA VI = VCCI or GND, IO = 0 1.2 V to 3.6 V 1.2 V to 3.6 V 10 μA
0 V 3.6 V –2
3.6 V 0 V 10
ICCB VI = VCCI or GND, IO = 0 1.2 V to 3.6 V 1.2 V to 3.6 V 10 μA
0 V 3.6 V 10
3.6 V 0 V –2
ICCA + ICCB
(see Table 4)
VI = VCCI or GND, IO = 0 1.2 V to 3.6 V 1.2 V to 3.6 V 20 μA
Ci Control inputs VI = 3.3 V or GND 3.3 V 3.3 V 2.5 pF
Cio A or B port VO = 3.3 V or GND 3.3 V 3.3 V 6 pF
(1) VCCO is the VCC associated with the output port.
(2) VCCI is the VCC associated with the input port.
(3) VCCI is the VCC associated with the input port.
(4) VCCO is the VCC associated with the output port.
(5) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

7.6 Switching Characteristics: VCCA = 1.2 V

over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 11)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V UNIT
TYP TYP TYP TYP TYP
tPLH A B 3.3 2.7 2.4 2.3 2.4 ns
tPHL 3.3 2.7 2.4 2.3 2.4
tPLH B A 3.3 3.1 2.9 2.8 2.7 ns
tPHL 3.3 3.1 2.9 2.8 2.7
tPHZ DIR A 5.1 5.2 5.3 5.2 3.7 ns
tPLZ 5.1 5.2 5.3 5.2 3.7
tPHZ DIR B 5.3 4.3 4 3.3 3.7 ns
tPLZ 5.3 4.3 4 3.3 3.7
tPZH(1) DIR A 8.6 7.3 6.8 6.1 6.4 ns
tPZL(1) 8.6 7.3 6.8 6.1 6.4
tPZH(1) DIR B 8.3 7.8 7.7 7.5 5.8 ns
tPZL(1) 8.3 7.8 7.7 7.5 5.8
(1) The enable time is a calculated value, derived using the formula shown in the Enable Times section.

7.7 Switching Characteristics: VCCA = 1.5 V ± 0.1 V

over recommended operating free-air temperature range, VCCA = 1.5 V ± 0.1 V (see Figure 11)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
UNIT
TYP MIN MAX MIN MAX MIN MAX MIN MAX
tPLH A B 2.9 0.7 5.6 0.6 5.2 0.5 4.2 0.5 3.8 ns
tPHL 2.9 0.7 5.6 0.6 5.2 0.5 4.2 0.5 3.8
tPLH B A 2.6 0.6 5.5 0.4 5.3 0.3 4.9 0.3 4.8 ns
tPHL 2.6 0.6 5.5 0.4 5.3 0.3 4.9 0.3 4.8
tPHZ DIR A 3.8 1.6 6.7 1.5 6.8 0.3 6.9 0.9 6.9 ns
tPLZ 3.8 1.6 6.7 1.5 6.8 0.3 6.9 0.9 6.9
tPHZ DIR B 5.1 1.8 8.1 1.6 7.1 1.1 4.7 1.4 4.5 ns
tPLZ 5.1 1.8 8.1 1.6 7.1 1.1 4.7 1.4 4.5
tPZH(1) DIR A 7.7 13.6 12.4 9.6 9.3 ns
tPZL(1) 7.7 13.6 12.4 9.6 9.3
tPZH(1) DIR B 6.7 12.3 12 11.1 10.7 ns
tPZL(1) 6.7 12.3 12 11.1 10.7
(1) The enable time is a calculated value, derived using the formula shown in the Enable Times section.

7.8 Switching Characteristics: VCCA = 1.8 V ± 0.15 V

over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (see Figure 11)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
UNIT
TYP MIN MAX MIN MAX MIN MAX MIN MAX
tPLH A B 2.7 0.6 5.3 0.5 5 0.4 3.9 0.4 3.4 ns
tPHL 2.7 0.6 5.3 0.5 5 0.4 3.9 0.4 3.4
tPLH B A 2.3 0.5 5.2 0.4 5 0.3 4.6 0.2 4.4 ns
tPHL 2.3 0.5 5.2 0.4 5 0.3 4.6 0.2 4.4
tPHZ DIR A 3.8 1.6 5.9 1.6 5.9 1.6 5.9 0.5 6 ns
tPLZ 3.8 1.6 5.9 1.6 5.9 1.6 5.9 0.5 6
tPHZ DIR B 5 1.8 7.7 1.4 6.8 1 4.4 1.4 5.3 ns
tPLZ 5 1.8 7.7 1.4 6.8 1 4.4 1.4 5.3
tPZH(1) DIR A 7.3 12.9 11.8 9 8.7 ns
tPZL(1) 7.3 12.9 11.8 9 8.7
tPZH(1) DIR B 6.5 11.2 10.9 9.8 9.4 ns
tPZL(1) 6.5 11.2 10.9 9.8 9.4
(1) The enable time is a calculated value, derived using the formula shown in the Enable Times section.

7.9 Switching Characteristics: VCCA = 2.5 V ± 0.2 V

over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (see Figure 11)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
UNIT
TYP MIN MAX MIN MAX MIN MAX MIN MAX
tPLH A B 2.6 0.5 4.9 0.4 4.6 0.3 3.4 0.3 3 ns
tPHL 2.6 0.5 4.9 0.4 4.6 0.3 3.4 0.3 3
tPLH B A 2.2 0.4 4.2 0.3 3.8 0.2 3.4 0.2 3.3 ns
tPHL 2.2 0.4 4.2 0.3 3.8 0.2 3.4 0.2 3.3
tPHZ DIR A 2.8 0.3 3.8 0.8 3.8 0.4 3.8 0.5 3.8 ns
tPLZ 2.8 0.3 3.8 0.8 3.8 0.4 3.8 0.5 3.8
tPHZ DIR B 4.9 2 7.6 1.5 6.5 0.6 4.1 1 4 ns
tPLZ 4.9 2 7.6 1.5 6.5 0.6 4.1 1 4
tPZH(1) DIR A 7.1 11.8 10.3 7.5 7.3 ns
tPZL(1) 7.1 11.8 10.3 7.5 7.3
tPZH(1) DIR B 5.4 8.6 8.1 7 6.6 ns
tPZL(1) 5.4 8.6 8.1 7 6.6
(1) The enable time is a calculated value, derived using the formula shown in the Enable Times section.

7.10 Switching Characteristics: VCCA = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 11)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V
VCCB = 1.8 V
± 0.15 V
VCCB = 2.5 V
± 0.2 V
VCCB = 3.3 V
± 0.3 V
UNIT
TYP MIN MAX MIN MAX MIN MAX MIN MAX
tPLH A B 2.6 0.4 4.7 0.3 4.4 0.2 3.3 0.2 2.8 ns
tPHL 2.6 0.4 4.7 0.3 4.4 0.2 3.3 0.2 2.8
tPLH B A 2.2 0.4 3.8 0.3 3.4 0.2 3 0.1 2.8 ns
tPHL 2.2 0.4 3.8 0.3 3.4 0.2 3 0.1 2.8
tPHZ DIR A 3.1 1.3 4.3 1.3 4.3 1.3 4.3 1.3 4.3 ns
tPLZ 3.1 1.3 4.3 1.3 4.3 1.3 4.3 1.3 4.3
tPHZ DIR B 4 0.7 7.4 0.6 6.5 0.7 4 1.5 4.9 ns
tPLZ 4 0.7 7.4 0.6 6.5 0.7 4 1.5 4.9
tPZH(1) DIR A 6.2 11.2 9.9 7 6.7 ns
tPZL(1) 6.2 11.2 9.9 7 6.7
tPZH(1) DIR B 5.7 8.9 8.5 7.2 6.8 ns
tPZL(1) 5.7 8.9 8.5 7.2 6.8
(1) The enable time is a calculated value, derived using the formula shown in the Enable Times section.

7.11 Operating Characteristics

TA = 25°C
PARAMETER TEST
CONDITIONS
VCCA =
VCCB = 1.2 V
VCCA =
VCCB = 1.5 V
VCCA =
VCCB = 1.8 V
VCCA =
VCCB = 2.5 V
VCCA =
VCCB = 3.3 V
UNIT
TYP TYP TYP TYP TYP
CpdA(1) A-port input,
B-port output
CL = 0 pF,
f = 10 MHz,
tr = tf = 1 ns
3 3 3 3 4 pF
B-port input,
A-port output
13 13 14 15 15
CpdB(1) A-port input,
B-port output
CL = 0 pF,
f = 10 MHz,
tr = tf = 1 ns
13 13 14 15 15 pF
B-port input,
A-port output
3 3 3 3 3
(1) Power dissipation capacitance per transceiver

7.12 Typical Characteristics

7.12.1 Typical Propagation Delay (A to B) vs Load Capacitance

TA = 25°C, VCCA = 1.2 V

typc2_ces530.gifFigure 1. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance TA = 25°C, VCCA = 1.2 V
typc1_ces530.gifFigure 2. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance TA = 25°C, VCCA = 1.2 V

7.12.2 Typical Propagation Delay (A to B) vs Load Capacitance

TA = 25°C, VCCA = 1.5 V

typc3_ces530.gifFigure 3. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance TA = 25°C, VCCA = 1.5 V
typc4_ces530.gifFigure 4. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance TA = 25°C, VCCA = 1.5 V

7.12.3 Typical Propagation Delay (A to B) vs Load Capacitance

TA = 25°C, VCCA = 1.8 V

typc5_ces530.gifFigure 5. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance TA = 25°C, VCCA = 1.8 V
typc6_ces530.gifFigure 6. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance TA = 25°C, VCCA = 1.8 V

7.12.4 Typical Propagation Delay (A to B) vs Load Capacitance

TA = 25°C, VCCA = 2.5 V

typc7_ces530.gifFigure 7. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance TA = 25°C, VCCA = 2.5 V
typc8_ces530.gifFigure 8. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance TA = 25°C, VCCA = 2.5 V

7.12.5 Typical Propagation Delay (A to B) vs Load Capacitance

TA = 25°C, VCCA = 3.3 V

typc9_ces530.gifFigure 9. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance TA = 25°C, VCCA = 3.3 V
typc10_ces530.gifFigure 10. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance TA = 25°C, VCCA = 3.3 V