SCLS140G December   1982  – February 2025 SN54HC373 , SN74HC373

PRODUCTION DATA  

  1.   1
  2. Features
  3. Description
  4. Pin Configuration and Functions
  5. Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 Recommended Operating Conditions
    3. 4.3 Thermal Information
    4. 4.4 Electrical Characteristics
    5. 4.5 Timing Requirements
    6. 4.6 Switching Characteristics
    7. 4.7 Switching Characteristics
    8. 4.8 Operating Characteristics
  6. Parameter Measurement Information
    1.     15
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
        1. 7.2.1.1 Power Considerations
        2. 7.2.1.2 Input Considerations
        3. 7.2.1.3 Output Considerations
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DB|20
  • NS|20
  • N|20
  • DW|20
  • PW|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The SNx4HC373 contains eight D-type latches. All channels share a latch enable (LE) and output enable (OE) input.

When the latch is enabled (LE is high), data is allowed to pass through from the D inputs to the Q outputs.

When the latch is disabled (LE is low), the Q outputs hold the last state they had regardless of changes at the D inputs.

If the latch enable (LE) input is held low during startup, the output state of all channels is unknown until the latch enable (LE) input is driven high with valid input signals at all data (D) inputs.

When the outputs are enabled (OE is low), the outputs are actively driving low or high.

When the outputs are disabled (OE is high), the outputs are set into the high-impedance state.

The active low output enable (OE) does not have any impact on the stored state in the latches.