SLAS679A December   2011  – September 2015 TLV320AIC3262

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics, SAR ADC
    6. 8.6  Electrical Characteristics, ADC
    7. 8.7  Electrical Characteristics, Bypass Outputs
    8. 8.8  Electrical Characteristics, Microphone Interface
    9. 8.9  Electrical Characteristics, Audio DAC Outputs
    10. 8.10 Electrical Characteristics, Class-D Outputs
    11. 8.11 Electrical Characteristics, Miscellaneous
    12. 8.12 Electrical Characteristics, Logic Levels
    13. 8.13 I2S/LJF/RJF Timing in Master Mode (see )
    14. 8.14 I2S/LJF/RJF Timing in Slave Mode (see )
    15. 8.15 DSP/Mono PCM Timing in Slave Mode (see )
    16. 8.16 I2C Interface Timing (see )
    17. 8.17 SPI Interface Timing
    18. 8.18 Dissipation Ratings
    19. 8.19 Typical Characteristics
      1. 8.19.1 Audio ADC Performance
      2. 8.19.2 Audio DAC Performance
      3. 8.19.3 Class-D Driver Performance
      4. 8.19.4 MICBIAS Performance
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1  Digital Pins
      2. 10.3.2  Analog Pins
      3. 10.3.3  Multifunction Pins
      4. 10.3.4  Analog Audio I/O
        1. 10.3.4.1  Analog Low Power Bypass
        2. 10.3.4.2  ADC Bypass Using Mixer Amplifiers
        3. 10.3.4.3  Headphone Outputs
        4. 10.3.4.4  Using the Headphone Amplifier
        5. 10.3.4.5  Ground-Centered Headphone Amplifier Configuration
        6. 10.3.4.6  Circuit Topology
        7. 10.3.4.7  Charge Pump Set-Up and Operation
        8. 10.3.4.8  Output Power Optimization
        9. 10.3.4.9  Offset Correction and Start-Up
        10. 10.3.4.10 Ground-Centered Headphone Setup
          1. 10.3.4.10.1 High Audio Output Power, High Performance Setup
          2. 10.3.4.10.2 High Audio Output Power, Low Power Consumption Setup
          3. 10.3.4.10.3 Medium Audio Output Power, High Performance Setup
          4. 10.3.4.10.4 Lowest Power Consumption, Medium Audio Output Power Setup
        11. 10.3.4.11 Stereo Unipolar Configuration
          1. 10.3.4.11.1 Circuit Topology
          2. 10.3.4.11.2 Unipolar Turn-On Transient (Pop) Reduction
        12. 10.3.4.12 Mono Differential DAC to Mono Differential Headphone Output
        13. 10.3.4.13 Stereo Line Outputs
        14. 10.3.4.14 Line Out Amplifier Configurations
        15. 10.3.4.15 Differential Receiver Output
        16. 10.3.4.16 Stereo Class-D Speaker Outputs
      5. 10.3.5  ADC / Digital Microphone Interface
        1. 10.3.5.1 ADC Processing Blocks - Overview
          1. 10.3.5.1.1 ADC Processing Blocks
      6. 10.3.6  DAC
        1. 10.3.6.1 DAC Processing Blocks — Overview
          1. 10.3.6.1.1 DAC Processing Blocks
      7. 10.3.7  Powertune
      8. 10.3.8  Clock Generation and PLL
      9. 10.3.9  Interfaces
        1. 10.3.9.1 Control Interfaces
          1. 10.3.9.1.1 I2C Control
          2. 10.3.9.1.2 SPI Control
        2. 10.3.9.2 Digital Audio Interfaces
        3. 10.3.9.3 miniDSP
          1. 10.3.9.3.1 miniDSP
          2. 10.3.9.3.2 Software
        4. 10.3.9.4 Asynchronous Sample Rate Conversion (ASRC)
      10. 10.3.10 Device Special Functions
      11. 10.3.11 Device Power Consumption
      12. 10.3.12 Powertune
      13. 10.3.13 Clock Generation and PLL
      14. 10.3.14 Interfaces
        1. 10.3.14.1 Control Interfaces
        2. 10.3.14.2 I2C Control
        3. 10.3.14.3 SPI Control
        4. 10.3.14.4 Digital Audio Interfaces
      15. 10.3.15 miniDSP
      16. 10.3.16 Device Special Functions
    4. 10.4 Device Functional Modes
      1. 10.4.1 Recording Mode
      2. 10.4.2 Playback Mode
      3. 10.4.3 Analog Low Power Bypass Modes
    5. 10.5 Register Maps
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Charge Pump Flying and Holding Capacitor
        2. 11.2.2.2 Reference Filtering Capacitor
        3. 11.2.2.3 MICBIAS
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
    1. 12.1 Device Power Consumption
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Examples
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Community Resources
    3. 14.3 Trademarks
    4. 14.4 Electrostatic Discharge Caution
    5. 14.5 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18 to AVSS1, AVSS2, AVSS4, AVSS respectively(2) –0.3 2.2 V
AVDD3_33 to AVSS3 and RECVDD_33 to RECVSS –0.3 3.9 V
DVDD to DVSS –0.3 2.2 V
IOVDD to IOVSS –0.3 3.9 V
HVDD_18 to AVSS –0.3 2.2 V
CPVDD_18 to CPVSS –0.3 2.2 V
SLVDD to SLVSS, SRVDD to SRVSS, SPK_V to SRVSS(3) –0.3 6 V
Digital Input voltage to ground IOVSS – 0.3 IOVDD + 0.3 V
Analog input voltage to ground AVSS – 0.3 AVDDx_18 + 0.3 V
VBAT –0.3 6 V
Operating temperature –40 85 °C
Junction temperature (TJ Max) 105 °C
Storage temperature, Tstg –55 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) TI recommends to keep all AVDDx_18 supplies within ± 50 mV of each other.
(3) TI recommends to keep SLVDD, SRVDD, and SPK_V supplies within ± 50 mV of each other.

8.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2400 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

MIN NOM MAX UNIT
AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18 Power Supply Voltage Range Referenced to AVSS1, AVSS2, AVSS4, AVSS respectively(1) It is recommended to connect each of these supplies to a single supply rail. 1.5 1.8 1.95 V
AVDD3_33 , RECVDD_33 Referenced to AVSS3 and RECVSS respectively 1.65(3) 3.3 3.6
IOVDD Referenced to IOVSS(1) 1.1 3.6
DVDD(2) Referenced to DVSS(1) 1.26 1.8 1.95
CPVDD_18 Power Supply Voltage Range Referenced to CPVSS (1) 1.26 1.8 1.95 V
HVDD_18 Referenced to AVSS(1) Ground-centered Configuration 1.5(3) 1.8 1.95
Unipolar Configuration 1.65(3) 3.6
SLVDD(1) Power Supply Voltage Range Referenced to SLVSS(1) 2.7 5.5 V
SRVDD(1) Power Supply Voltage Range Referenced to SRVSS(1) 2.7 5.5 V
SPK_V(1) Power Supply Voltage Range Referenced to SRVSS(1) 2.7 5.5 V
VREF_SAR External voltage reference for SAR Referenced to AVSS 1.8 AVDDx_18 V
PLL Input Frequency(4) Clock divider uses fractional divide
(D > 0), P=1, PLL_CLKIN_DIV=1, DVDD ≥ 1.65 V (Refer to table in SLAU309, Maximum TLV320AIC3262 Clock Frequencies)
10 20 MHz
Clock divider uses integer divide
(D = 0), P=1, PLL_CLKIN_DIV=1, DVDD ≥ 1.65 V (Refer to table in SLAU309, Maximum TLV320AIC3262 Clock Frequencies)
0.512 20 MHz
MCLK Master Clock Frequency MCLK; Master Clock Frequency; IOVDD ≥ 1.65 V 50 MHz
MCLK; Master Clock Frequency; IOVDD ≥ 1.1 V 33
SCL SCL Clock Frequency 400 kHz
LOL, LOR Stereo line output load resistance 0.6 10
HPL, HPR Stereo Headphone Output Load Resistance Single-ended configuration 14.4 16 Ω
SPKLP-SPKLM, SPKRP-SPKRM Speaker Output Load Resistance Differential 7.2 8 Ω
RECP-RECM Receiver output resistance Differential 24.4 32 Ω
CIN Charge Pump Input Capacitor (CPVDD to CPVSS Pins) 10 µF
CO Charge Pump Output Capacitor (VNEG Pin) Type X7R 2.2 µF
CF Charge Pump Flying Capacitor (CPFCP to CPFCM Pins) Type X7R 2.2 µF
TOPR Operating Temperature Range –40 85 °C
(1) All grounds on board are tied together, so they should not differ in voltage by more than 0.1 V max, for any combination of ground signals. AVDDx_18 are within ±0.05 V of each other. SLVDD, SRVDD, and SPK_V are within ±0.05 V of each other.
(2) At DVDD values lower than 1.65V, the PLL does not function. Please see table in SLAU309, Maximum TLV320AIC3262 Clock Frequencies for details on maximum clock frequencies.
(3) Minimum voltage for HVDD_18 and RECVDD_33 should be greater than or equal to AVDD2_18. Minimum voltage for AVDD3_33 should be greater than or equal to AVDD1_18 and AVDD2_18.
(4) The PLL Input Frequency refers to clock frequency after PLL_CLKIN_DIV divider. Frequencies higher than 20 MHz can be sent as an input to this PLL_CLKIN_DIV and reduced in frequency prior to input to the PLL.

8.4 Thermal Information

THERMAL METRIC(1) TLV320AIC3262 UNIT
YZF (DSBGA)
81 PINS
RθJA Junction-to-ambient thermal resistance 39.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.1 °C/W
RθJB Junction-to-board thermal resistance 12.0 °C/W
ψJT Junction-to-top characterization parameter 0.7 °C/W
ψJB Junction-to-board characterization parameter 11.5 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics, SAR ADC

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SAR ADC INPUTS
Analog Input Input voltage range IN1L/AUX1 or IN1R/AUX2 Selected 0 VREF_SAR V
Input impedance 1 ÷ (f × CSAR_IN)(1)
Input capacitance, CSAR_IN 25 pF
Input leakage current 1 µA
Battery Input VBAT Input voltage range VBAT (Battery measurement) selected 2.2 5.5 V
VBAT Input impedance 5
VBAT Input capacitance 25 pF
VBAT Input leakage current 1 µA
SAR ADC CONVERSION
Resolution Programmable: 8-bit, 10-bit, 12-bit 8 12 Bits
No missing codes 12-bit resolution 11 Bits
IN1L/
AUX1
Integral linearity 12-bit resolution, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, External Reference = 1.8 V(3) ±1 LSB
Offset error ±1 LSB
Gain error 0.07%
Noise DC voltage applied to IN1L/AUX1 = 1 V, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, External Reference = 1.8 V(2)(3) ±1 LSB
VBAT Accuracy 12-bit resolution, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, Internal Reference = 1.25 V 2%
Offset error ±2 LSB
Gain error 1.5%
Noise DC voltage applied to VBAT = 3.6 V, 12-bit resolution, SAR ADC clock = Internal Oscillator Clock, Conversion clock = Internal Oscillator / 4, Internal Reference = 1.25 V ±0.5 LSB
CONVERSION RATE
Normal conversion operation 12-bit resolution, SAR ADC clock = 12 MHz External Clock, Conversion clock = External Clock / 4, External Reference = 1.8 V(3). With Fast SPI reading of data. 119 kHz
High-speed conversion operation 8-bit resolution,SAR ADC clock = 12 MHz External Clock, Internal Conversion clock = External Clock (Conversion accuracy is reduced.), External Reference = 1.8 V(3). With Fast SPI reading of data. 250 kHz
VOLTAGE REFERENCE - VREF_SAR
Voltage range Internal VREF_SAR 1.25 ± 0.05 V
External VREF_SAR 1.25 AVDDx_18 V
Reference Noise CM=0.9V, Cref = 1 μF 32 μVRMS
Decoupling Capacitor 1 μF
(1) SAR input impedance is dependent on the sampling frequency (f designated in Hz), and the sampling capacitor is CSAR_IN = 25 pF.
(2) Noise from external reference voltage is excluded from this measurement.
(3) When utilizing External SAR reference, this external reference should be restricted VEXT_SAR_REF ≤ AVDD_18 and AVDD2_18.

8.6 Electrical Characteristics, ADC

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO ADC (CM = 0.9 V) (1) (2)
Input signal level (0dB) Single-ended, CM = 0.9 V 0.5 VRMS
Device Set-up 1-kHz sine wave input, Single-ended Configuration
IN2R to Right ADC and IN2L to Left ADC, Rin = 20 kΩ, fs = 48 kHz,
AOSR = 128, MCLK = 256*fs, PLL Disabled; AGC = OFF,
Channel Gain = 0 dB, Processing Block = PRB_R1,
Power Tune = PTM_R4
SNR Signal-to-noise ratio, A-weighted(1) (2) Inputs AC-shorted to ground 85 93 dB
IN1R, IN3R, IN4R each exclusively routed in separate tests to Right ADC and AC-shorted to ground
IN1L, IN3L, IN4L each exclusively routed in separate tests to Left ADC and AC-shorted to ground
93
DR Dynamic range A-weighted(1) (2) –60-dB full-scale, 1-kHz input signal 93 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –87 –70 dB
IN1R,IN3R, IN4R each exclusively routed in separate tests to Right ADC
IN1L, IN3L, IN4L each exclusively routed in separate tests to Left ADC
–3dB full-scale, 1-kHz input signal
–87
Gain Error 1kHz sine wave input at –3-dBFS, Single-ended configuration
Rin = 20K fs = 48 kHz, AOSR=128, MCLK = 256* fs, PLL Disabled
AGC = OFF, Channel Gain=0dB, Processing Block = PRB_R1,
Power Tune = PTM_R4, CM=0.9 V
0.1 dB
Input Channel Separation 1kHz sine wave input at –3 dBFS, Single-ended configuration
IN1L routed to Left ADC, IN1R routed to Right ADC, Rin = 20K
AGC = OFF, AOSR = 128, Channel Gain=0 dB, CM=0.9 V
110 dB
Input Pin Crosstalk 1kHz sine wave input at –3 dBFS on IN2L, IN2L internally not routed.
IN1L routed to Left ADC, AC-coupled to ground
116 dB
1kHz sine wave input at –3 dBFS on IN2R, IN2R internally not routed.
IN1R routed to Right ADC, AC-coupled to ground
Single-ended configuration Rin = 20 kΩ, AOSR = 128 Channel Gain = 0dB, CM = 0.9 V
PSRR 217Hz, 100mVpp signal on AVDD_18, AVDDx_18
Single-ended configuration, Rin = 20 kΩ, Channel Gain = 0 dB; CM = 0.9 V
59 dB
AUDIO ADC (CM = 0.75 V)
Input signal level (0dB) Single-ended, CM=0.75 V, AVDD_18, AVDDx_18 = 1.5 V 0.375 VRMS
Device Set-up 1-kHz sine wave input, Single-ended Configuration
IN2R to Right ADC and IN2L to Left ADC, Rin = 20K, fs = 48 kHz,
AOSR = 128, MCLK = 256*fs, PLL Disabled; AGC = OFF,
Channel Gain = 0dB, Processing Block = PRB_R1,
Power Tune = PTM_R4
SNR Signal-to-noise ratio, A-weighted (1) (2) Inputs ac-shorted to ground 91 dB
IN1R, IN3R, IN4R each exclusively routed in separate tests to Right ADC and AC-shorted to ground
IN1L, IN3L, IN4L each exclusively routed in separate tests to Left ADC and AC-shorted to ground
91 dB
DR Dynamic range A-weighted(1) (2) –60-dB full-scale, 1-kHz input signal 91 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –85 dB
AUDIO ADC (Differential Input, CM = 0.9 V)
Input signal level (0dB) Differential, CM = 0.9 V, AVDD_18, AVDDx_18 = 1.8 V 1 VRMS
Device Set-up 1-kHz sine wave input, Differential Configuration
IN1L, IN1R Routed to Right ADC, IN2L, IN2R Routed to Left ADC
Rin = 20 kΩ, fs = 48 kHz, AOSR = 128, MCLK = 256 × fs,
PLL Disabled, AGC = OFF, Channel Gain = 0dB,
Processing Block = PRB_R1, Power Tune = PTM_R4
SNR Signal-to-noise ratio, A-weighted (1) (2) Inputs ac-shorted to ground 94 dB
DR Dynamic range A-weighted(1) (2) –60-dB full-scale, 1-kHz input signal 94 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –88 dB
Gain Error 1-kHz sine wave input at –3 dBFS, Differential configuration
Rin = 20 kΩ, fs = 48 kHz, AOSR=128, MCLK = 256* fs, PLL Disabled
AGC = OFF, Channel Gain=0 dB, Processing Block = PRB_R1,
Power Tune = PTM_R4, CM=0.9 V
0.1 dB
Input Channel Separation 1 kHz sine wave input at –3 dBFS, Differential configuration
IN1L/IN1R differential signal routed to Right ADC,
IN2L/IN2R differential signal routed to Left ADC, Rin = 20 kΩ
AGC = OFF, AOSR = 128, Channel Gain=0 dB, CM=0.9 V
107 dB
Input Pin Crosstalk 1kHz sine wave input at –3 dBFS on IN2L/IN2R, IN2L/IN2R internally not routed.
IN1L/IN1R differentially routed to Right ADC, ac-coupled to ground
109 dB
1kHz sine wave input at –3 dBFS on IN2L/IN2R, IN2L/IN2R internally not routed.
IN3L/IN3R differentially routed to Left ADC, ac-coupled to ground
Differential configuration Rin = 20 kΩ, AOSR=128 Channel Gain=0dB, CM=0.9 V
PSRR 217 Hz, 100 mVpp signal on AVDD_18, AVDDx_18
Differential configuration, Rin=20K, Channel Gain=0 dB; CM=0.9 V
59 dB
AUDIO ADC
ADC programmable gain amplifier gain IN1 - IN3, Single-Ended, Rin = 10K, PGA gain set to 0 dB 0 dB
IN1 - IN3, Single-Ended, Rin = 10K, PGA gain set to 47.5 dB 47.5 dB
IN1 - IN3, Single-Ended, Rin = 20K, PGA gain set to 0 dB –6 dB
IN1 - IN3, Single-Ended, Rin = 20K, PGA gain set to 47.5 dB 41.5 dB
IN1 - IN3, Single-Ended, Rin = 40K, PGA gain set to 0 dB –12 dB
IN1 - IN3, Single-Ended, Rin = 40K, PGA gain set to 47.5 dB 35.5 dB
IN4, Single-Ended, Rin = 20K, PGA gain set to 0 dB –6 dB
IN4, Single-Ended, Rin = 20K, PGA gain set to 47.5 dB 41.5 dB
ADC programmable gain amplifier step size 1-kHz tone 0.5 dB
(1) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.
(2) All performance measurements done with pre-analyzer 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

8.7 Electrical Characteristics, Bypass Outputs

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG BYPASS TO RECEIVER AMPLIFIER, DIRECT MODE
Device Setup Load = 32 Ω (differential), 56 pF;
Input CM=0.9 V; Output CM=1.65 V;
IN1L routed to RECP and IN1R routed to RECM;
Channel Gain=0 dB
Full scale differential input voltage (0dB) 1 VRMS
Gain Error 707 mVrms (–3 dBFS), 1-kHz input signal 0.5 dB
Noise, A-weighted(1) Idle Channel, IN1L and IN1R ac-shorted to ground 13 μVRMS
THD+N Total Harmonic Distortion plus Noise 707 mVrms (–3dBFS), 1-kHz input signal –88 dB
ANALOG BYPASS TO HEADPHONE AMPLIFIER, PGA MODE
Device Set-up Load = 16 Ω (single-ended), 56 pF; HVDD_18 = 3.3 V
Input CM=0.9 V; Output CM=1.65 V
IN1L routed to ADCPGA_L, ADCPGA_L routed through MAL to HPL; and IN1R routed to ADCPGA_R, ADCPGA_R routed through MAR to HPR; Rin = 20K; Channel Gain = 0 dB
Full scale input voltage (0dB) 0.5 VRMS
Gain Error 446 mVrms (–1 dBFS), 1-kHz input signal –1.2 dB
Noise, A-weighted(1) Idle Channel, IN1L and IN1R ac-shorted to ground 6 μVRMS
THD+N Total Harmonic Distortion plus Noise 446 mVrms (–1 dBFS), 1-kHz input signal –81 dB
ANALOG BYPASS TO HEADPHONE AMPLIFIER (GROUND-CENTERED CIRCUIT CONFIGURATION), PGA MODE
Device Set-up Load = 16 Ω (single-ended), 56 pF;
Input CM=0.9 V;
IN1L routed to ADCPGA_L, ADCPGA_L routed through MAL to HPL; and IN1R routed to ADCPGA_R, ADCPGA_R routed through MAR to HPR; Rin = 20K; Channel Gain = 0 dB
Full scale input voltage (0 dB) 0.5 VRMS
Gain Error 446 mVrms (–1 dBFS), 1-kHz input signal –1.0 dB
Noise, A-weighted(1) Idle Channel, IN1L and IN1R AC-shorted to ground 11 μVRMS
THD+N Total Harmonic Distortion plus Noise 446 mVrms (–1 dBFS), 1-kHz input signal –67 dB
ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE
Device Set-up Load = 10 KΩ (single-ended), 56 pF;
Input and Output CM=0.9V;
IN1L routed to ADCPGA_L and IN1R routed to ADCPGA_R; Rin = 20k
ADCPGA_L routed through MAL to LOL and ADCPGA_R routed through MAR to LOR; Channel Gain = 0 dB
Full scale input voltage (0 dB) 0.5 VRMS
Gain Error 446 mVrms (–1 dBFS), 1-kHz input signal –0.7 dB
Noise, A-weighted(1) Idle Channel,
IN1L and IN1R AC-shorted to ground
6 μVRMS
Channel Gain = 40 dB,
Inputs AC-shorted to ground, Input Referred
3 μVRMS
ANALOG BYPASS TO LINE-OUT AMPLIFIER, DIRECT MODE
Device Set-up Load = 10 KΩ (single-ended), 56 pF;
Input and Output CM=0.9 V;
IN1L routed to LOL and IN1R routed to LOR;
Channel Gain = 0 dB
Full scale input voltage (0 dB) 0.5 VRMS
Gain Error 446 mVrms (–1 dBFS), 1-kHz input signal –0.3 dB
Noise, A-weighted(1) Idle Channel,
IN1L and IN1R AC-shorted to ground
3 μVRMS
(1) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

8.8 Electrical Characteristics, Microphone Interface

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
MICROPHONE BIAS (MICBIAS or MICBIAS_EXT)
Bias voltage CM=0.9 V, AVDD3_33 = 1.8 V Micbias Mode 0 1.63 V
Micbias Mode 3 AVDD3_33 V
CM=0.75 V, AVDD3_33 = 1.8 V Micbias Mode 0 1.36 V
Micbias Mode 3 AVDD3_33 V
MICROPHONE BIAS (MICBIAS or MICBIAS_EXT)
Bias voltage CM=0.9 V, AVDD3_33 = 3.3 V Micbias Mode 0 1.63 V
Micbias Mode 1 2.36 V
Micbias Mode 2 2.91 V
Micbias Mode 3 AVDD3_33 V
CM=0.75 V, AVDD3_33 = 3.3 V Micbias Mode 0 1.36 V
Micbias Mode 1 1.97 V
Micbias Mode 2 2.42 V
Micbias Mode 3 AVDD3_33 V
Output Noise CM=0.9 V, Micbias Mode 2, A-weighted, 20Hz to 20kHz bandwidth,
Current load = 0mA.
26 μVRMS
184 nV/√Hz
Current Sourcing Micbias Mode 0 (CM=0.9 V)(1) 3 mA
Micbias Mode 1 or Micbias Mode 2 (CM=0.9 V)(2) 7 mA
Inline Resistance Micbias Mode 3 63.6 Ω
(1) To provide 3mA, Micbias Mode 0 voltage yields typical voltage of 1.60V for Common Mode of 0.9V.
(2) To provide 7mA, Micbias Mode 1 voltage yields typical voltage of 2.31V, and Micbias Mode 2 voltage yields typical voltage of 2.86V for Common Mode of 0.9V.

8.9 Electrical Characteristics, Audio DAC Outputs

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT
Device Set-up Load = 10 kΩ (single-ended), 5 6pF
Input & Output CM=0.9 V
DOSR = 128, MCLK=256* fs,
Channel Gain = 0dB,
Processing Block = PRB_P1,
Power Tune = PTM_P4
Full scale output voltage (0dB) 0.5 VRMS
SNR Signal-to-noise ratio A-weighted(1) (2) All zeros fed to DAC input 85 101 dB
DR Dynamic range, A-weighted (1) (2) –60-dB 1-kHz input full-scale signal, Word length=20 bits 101 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –88 dB
DAC Gain Error –3-dB full-scale, 1-kHz input signal 0.1 dB
DAC Mute Attenuation Mute 119 dB
DAC channel separation –1 dB, 1-kHz signal, between left and right Line out 108 dB
DAC PSRR 100 mVpp, 1-kHz signal applied to AVDD_18, AVDDx_18 71 dB
100 mVpp, 217-Hz signal applied to AVDD_18, AVDDx_18 71 dB
AUDIO DAC – STEREO SINGLE-ENDED LINE OUTPUT
Device Setup Load = 10 kΩ (single-ended), 56pF
Input & Output CM=0.75 V; AVDD_18, AVDDx_18, HVDD_18=1.5 V
DOSR = 128
MCLK=256* fs
Channel Gain = 0 dB
Processing Block = PRB_P1
Power Tune = PTM_P4
Full scale output voltage (0dB) 0.375 VRMS
SNR Signal-to-noise ratio, A-weighted (1) (2) All zeros fed to DAC input 99 dB
DR Dynamic range, A-weighted (1) (2) –60dB 1 kHz input full-scale signal, Word length=20 bits 99 dB
THD+N Total Harmonic Distortion plus Noise –3 dB full-scale, 1-kHz input signal –88 dB
AUDIO DAC – MONO DIFFERENTIAL LINE OUTPUT
Device Setup Load = 10 kΩ (differential), 56 pF
Input & Output CM=0.9 V, LOL signal routed to LOR amplifier
DOSR = 128, MCLK=256* fs,
Channel Gain = 0dB,
Processing Block = PRB_P1,
Power Tune = PTM_P4
Full scale output voltage (0dB) 1 VRMS
SNR Signal-to-noise ratio A-weighted(1) (2) All zeros fed to DAC input 101 dB
DR Dynamic range, A-weighted (1) (2) –60 dB 1-kHz input full-scale signal, 101 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –86 dB
DAC Gain Error –3-dB full-scale, 1-kHz input signal 0.1 dB
DAC Mute Attenuation Mute 97 dB
DAC PSRR 100 mVpp, 1-kHz signal applied to AVDD_18, AVDDx_18 62 dB
100 mVpp, 217-Hz signal applied to AVDD_18, AVDDx_18 63 dB
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (GROUND-CENTERED CIRCUIT CONFIGURATION)
Device Set-up Load = 16 Ω (single-ended), 56 pF,
Input CM=0.9 V;
DOSR = 128, MCLK=256* fs,
Channel Gain = 0 dB,
Processing Block = PRB_P1,
Power Tune = PTM_P3,
Headphone Output Strength=100%
Output 1 Output voltage 0.5 VRMS
SNR Signal-to-noise ratio, A-weighted(1) (2) All zeros fed to DAC input 80 94 dB
DR Dynamic range, A-weighted (1) (2) –60 dB 1-kHz input full-scale signal 93 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –71 –55 dB
DAC Gain Error –3-dB, 1-kHz input full scale signal –0.2 dB
DAC Mute Attenuation Mute 92 dB
DAC channel separation –3 dB, 1-kHz signal, between left and right HP out 83 dB
DAC PSRR 100 mVpp, 1-kHz signal applied to AVDD_18, AVDD1x_18 55 dB
100 mVpp, 217-Hz signal applied to AVDD_18, AVDD1x_18 55 dB
Power Delivered THDN ≤ –40 dB, Load = 16 Ω 15 mW
Output 2 Output voltage Load = 16 Ω (single-ended), Channel Gain = 5 dB 0.8 VRMS
SNR Signal-to-noise ratio, A-weighted(1) (2) All zeros fed to DAC input, Load = 16 Ω 96 dB
Power Delivered THDN ≤ –40 dB, Load = 16 Ω 24 mW
Output 3 Output voltage Load = 32 Ω (single-ended), Channel Gain = 5 dB 0.9 VRMS
SNR Signal-to-noise ratio, A-weighted(1) (2) All zeros fed to DAC input, Load = 32 Ω 97 dB
Power Delivered THDN ≤ –40 dB, Load = 32 Ω 22 mW
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (UNIPOLAR CIRCUIT CONFIGURATION)
Device Set-up Load = 16 Ω (single-ended), 56 pF
Input & Output CM=0.9 V, DOSR = 128,
MCLK=256* fs, Channel Gain=0dB
Processing Block = PRB_P1
Power Tune = PTM_P4
Headphone Output Control = 100%
Full scale output voltage (0dB) 0.5 VRMS
SNR Signal-to-noise ratio, A-weighted(1) (2) All zeros fed to DAC input 100 dB
DR Dynamic range, A-weighted (1) (2) –60 dB 1-kHz input full-scale signal, Power Tune = PTM_P4 100 dB
THD+N Total Harmonic Distortion plus Noise –3 dB full-scale, 1-kHz input signal –79 dB
DAC Gain Error –3 dB, 1-kHz input full scale signal –0.2 dB
DAC Mute Attenuation Mute 119 dB
DAC channel separation –1 dB, 1-kHz signal, between left and right HP out 88 dB
DAC PSRR 100 mVpp, 1-kHz signal applied to AVDD_18, AVDD1x_18 64 dB
100 mVpp, 217-Hz signal applied to AVDD_18, AVDD1x_18 70 dB
Power Delivered RL=16 Ω
THDN ≤ –40 dB, Input CM=0.9 V,
Output CM=0.9 V
15 mW
AUDIO DAC – STEREO SINGLE-ENDED HEADPHONE OUTPUT (UNIPOLAR CIRCUIT CONFIGURATION)
Device Set-up Load = 16 Ω (single-ended), 56 pF,
Input & Output CM=0.75 V; AVDD_18, AVDDx_18, HVDD_18=1.5 V,
DOSR = 128, MCLK=256* fs,
Channel Gain = 0 dB,
Processing Block = PRB_P1,
Power Tune = PTM_P4
Headphone Output Control = 100%
Full scale output voltage (0dB) 0.375 VRMS
SNR Signal-to-noise ratio, A-weighted(1) (2) All zeros fed to DAC input 99 dB
DR Dynamic range, A-weighted (1) (2) -60dB 1 kHz input full-scale signal 99 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –77 dB
AUDIO DAC – MONO DIFFERENTIAL RECEIVER OUTPUT
Device Setup Load = 32 Ω (differential), 56 pF,
Output CM=1.65 V,
AVDDx_18=1.8 V, DOSR = 128
MCLK=256* fs, Left DAC routed to LOL to RECP, LOL signal routed to LOR to RECM, Channel (Receiver Driver) Gain = 6dB for full scale output signal,
Processing Block = PRB_P4,
Power Tune = PTM_P4
Full scale output voltage (0dB) 2 VRMS
SNR Signal-to-noise ratio, A-weighted(1) (2) All zeros fed to DAC input 90 99 dB
DR Dynamic range, A-weighted (1) (2) –60-dB 1-kHz input full-scale signal 97 dB
THD+N Total Harmonic Distortion plus Noise –3-dB full-scale, 1-kHz input signal –81 dB
DAC PSRR 100 mVpp, 1-kHz signal applied to AVDD_18, AVDD1x_18 56 dB
100 mVpp, 217-Hz signal applied to AVDD_18, AVDD1x_18 58 dB
Power Delivered RL=32 Ω
THDN ≤ –40 dB, Input CM=0.9 V,
Output CM=1.65 V
117 mW
(1) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20 Hz to 20-kHz bandwidth using an audio analyzer.
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

8.10 Electrical Characteristics, Class-D Outputs

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DAC OUTPUT TO CLASS-D SPEAKER OUTPUT; LOAD = 8 Ω (DIFFERENTIAL), 56 pF + 33 µH
Output voltage SLVDD=SRVDD=3.6, BTL measurement, DAC input = 0 dBFS, class-D gain = 12 dB, THD+N ≤ –20 dB, CM=0.9 V 2.67 VRMS
SNR Signal-to-noise ratio SLVDD=SRVDD=3.6 V, BTL measurement, class-D gain = 6 dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2 Vrms)(1) (2), CM=0.9 V 91 dB
THD Total harmonic distortion SLVDD=SRVDD=3.6 V, BTL measurement, DAC input = 0dBFS, class-D gain = 6dB, CM=0.9V –66 dB
THD+N Total harmonic distortion + noise SLVDD=SRVDD=3.6 V, BTL measurement, DAC input = 0dBFS, class-D gain = 6dB, CM=0.9V –66 dB
PSRR Power-supply rejection ratio(1) SLVDD=SRVDD=3.6 V, BTL measurement, ripple on SPKVDD = 200 mVp-p at 1 kHz, CM=0.9V 67 dB
SLVDD=SRVDD=3.6 V, BTL measurement, ripple on SPKVDD = 200 mVp-p at 217 Hz, CM=0.9V 67 dB
Mute attenuation Analog Mute Only 102 dB
PO Maximum output power THD+N = 10%, f = 1 kHz, Class-D Gain = 12 dB, CM = 0.9 V, RL = 8 Ω SLVDD = SRVDD = 3.6 V 0.72 W
SLVDD = SRVDD = 4.2 V 1.00
SLVDD = SRVDD = 5.5 V 1.70
THD+N = 1%, f = 1 kHz, Class-D Gain = 12 dB, CM = 0.9 V, RL = 8 Ω SLVDD = SRVDD = 3.6 V 0.58
SLVDD = SRVDD = 4.2 V 0.80
SLVDD = SRVDD = 5.5 V 1.37
DAC OUTPUT TO CLASS-D SPEAKER OUTPUT; LOAD = 8 Ω (DIFFERENTIAL), 56 pF + 33 µH
Output voltage SLVDD=SRVDD=5 V, BTL measurement, DAC input = 0 dBFS, class-D gain = 12 dB, THD+N ≤ –20dB, CM=0.9 V 3.46 VRMS
SNR Signal-to-noise ratio SLVDD=SRVDD=5 V, BTL measurement, class-D gain = 6 dB, measured as idle-channel noise, A-weighted (with respect to full-scale output value of 2 Vrms)(1) (2) , CM=0.9V 91
THD Total harmonic distortion SLVDD=SRVDD=5 V, BTL measurement, DAC input = 0dBFS, class-D gain = 6 dB, CM=0.9 V –70
THD+N Total harmonic distortion + noise SLVDD=SRVDD=5 V, BTL measurement, DAC input = 0dBFS, class-D gain = 6 dB, CM=0.9 V –70
PSRR Power-supply rejection ratio(1) SLVDD=SRVDD=5 V, BTL measurement, ripple on SPKVDD = 200 mVp-p at 1 kHz, CM=0.9 V 67
SLVDD=SRVDD=5 V, BTL measurement, ripple on SPKVDD = 200 mVp-p at 217 Hz, CM=0.9 V 67
Mute attenuation Analog Mute Only 102 dB
PO Maximum output power THD+N = 10%, f = 1 kHz, Class-D Gain = 12 dB, CM = 0.9 V, RL = 8 Ω SLVDD = SRVDD = 5 V 1.41 W
(1) Ratio of output level with 1-kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

8.11 Electrical Characteristics, Miscellaneous

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
REFERENCE - VREF_AUDIO
Reference Voltage Settings CMMode = 0 (0.9 V) 0.9 V
CMMode = 1 (0.75 V) 0.75
Reference Noise CM=0.9 V, A-weighted, 20-Hz to 20-kHz bandwidth, Cref = 1μF 1.2 μVRMS
Decoupling Capacitor 1 μF
Bias Current 99 μA
miniDSP(1)
miniDSP clock frequency - ADC DVDD = 1.26 V 37.5 MHz
miniDSP clock frequency - DAC DVDD = 1.26 V 33.0 MHz
miniDSP clock frequency - ADC DVDD = 1.65 V 59.5 MHz
miniDSP clock frequency - DAC DVDD = 1.65 V 55.0 MHz
miniDSP clock frequency - ADC DVDD = 1.71 V 62.5 MHz
miniDSP clock frequency - DAC DVDD = 1.71 V 58.0 MHz
SHUTDOWN POWER
Device Set-up Coarse AVdd supply turned off, All External analog supplies powered and set available, No external digital input is toggled, register values are retained.
P(total)(2) Sum of all supply currents, all supplies at 1.8 V except for SLVDD = SRVDD = SPK_V = 3.6 V and RECVDD_33 = AVDD3_33 = 3.3 V 9.8 μW
I(DVDD) 2.6 μA
I(IOVDD) 0.15 μA
I(AVDD1_18, AVDD2_18, AVDD4_18, AVDD_18, HVDD_18, CPVDD_18) 1.15 μA
I(RECVDD_33, AVDD3_33) 0.15 μA
I(SLVDD, SRVDD, SPK_V) 0.5 μA
(1) miniDSP clock speed is specified by design and not tested in production.
(2) For further details on playback and recording power consumption, refer to Powertune section in SLAU309.

8.12 Electrical Characteristics, Logic Levels

TA = 25°C; AVDD_18, AVDDx_18, HVDD_18, CPVDD_18, DVDD, IOVDD = 1.8V; AVDD3_33, RECVDD_33 = 3.3V; SLVDD, SRVDD, SPK_V = 3.6V; fS (Audio) = 48kHz; Audio Word Length = 16 bits; Cext = 1μF on VREF_SAR and VREF_AUDIO pins; PLL disabled unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LOGIC FAMILY (CMOS)
VIH Logic Level IIH = 5 μA, IOVDD > 1.65 V 0.7 × IOVDD V
IIH = 5 μA, 1.2V ≤ IOVDD <1.65 V 0.9 × IOVDD V
IIH = 5 μA, IOVDD < 1.2 V IOVDD V
VIL IIL = 5 μA, IOVDD > 1.65 V –0.3 0.3 × IOVDD V
IIL = 5 μA, 1.2V ≤ IOVDD <1.65 V 0.1 × IOVDD V
IIL = 5 μA, IOVDD < 1.2 V 0 V
VOH IOH = 3 mA load, IOVDD > 1.65 V 0.8 × IOVDD V
IOH = 1 mA load, IOVDD < 1.65 V 0.8 × IOVDD V
VOL IOL = 3 mA load, IOVDD > 1.65 V 0.1 × IOVDD V
IOL = 1 mA load, IOVDD < 1.65 V 0.1 × IOVDD V
Capacitive Load 10 pF

8.13 I2S/LJF/RJF Timing in Master Mode (see Figure 2)

WCLK represents WCLK1 pin for Audio Serial Interface number 1, WCLK2 pin for Audio Serial Interface number 2, and WCLK3 pin for Audio Serial Interface number 3. BCLK represents BCLK1 pin for Audio Serial Interface number 1, BCLK2 pin for Audio Serial Interface number 2, and BCLK3 pin for Audio Serial Interface number 3. DOUT represents DOUT1 pin for Audio Serial Interface number 1, DOUT2 pin for Audio Serial Interface number 2, and DOUT3 pin for Audio Serial Interface number 3. DIN represents DIN1 pin for Audio Serial Interface number 1, DIN2 pin for Audio Serial Interface number 2, and DIN3 pin for Audio Serial Interface number 3. Specifications are at 25° C with DVDD = 1.8V and IOVDD = 1.8 V. Note: All timing specifications are measured at characterization but not tested at final test. The audio serial interface timing specifications are applied to Audio Serial Interface number 1, Audio Serial Interface number 2 and Audio Serial Interface number 3.
PARAMETER IOVDD=1.8 V IOVDD=3.3 V UNIT
MIN MAX MIN MAX
td(WS) WCLK delay 22 20 ns
td (DO-WS) WCLK to DOUT delay (For LJF Mode only) 22 20 ns
td (DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN set-up 4 4 ns
th(DI) DIN hold 4 4 ns
tr BCLK Rise time 10 8 ns
tf BCLK Fall time 10 8 ns

8.14 I2S/LJF/RJF Timing in Slave Mode (see Figure 3)

WCLK represents WCLK1 pin for Audio Serial Interface number 1, WCLK2 pin for Audio Serial Interface number 2, and WCLK3 pin for Audio Serial Interface number 3. BCLK represents BCLK1 pin for Audio Serial Interface number 1, BCLK2 pin for Audio Serial Interface number 2, and BCLK3 pin for Audio Serial Interface number 3. DOUT represents DOUT1 pin for Audio Serial Interface number 1, DOUT2 pin for Audio Serial Interface number 2, and DOUT3 pin for Audio Serial Interface number 3. DIN represents DIN1 pin for Audio Serial Interface number 1, DIN2 pin for Audio Serial Interface number 2, and DIN3 pin for Audio Serial Interface number 3. Specifications are at 25° C with DVDD = 1.8V and IOVDD = 1.8 V. Note: All timing specifications are measured at characterization but not tested at final test. The audio serial interface timing specifications are applied to Audio Serial Interface number 1, Audio Serial Interface number 2 and Audio Serial Interface number 3.
PARAMETER IOVDD=1.8 V IOVDD=3.3 V UNIT
MIN MAX MIN MAX
tH (BCLK) BCLK high period 30 30 ns
tL (BCLK) BCLK low period 30 30 ns
ts (WS) WCLK set-up 4 4 ns
th (WS) WCLK hold 4 4 ns
td (DO-WS) WCLK to DOUT delay (For LJF mode only) 22 20 ns
td (DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN set-up 4 4 ns
th(DI) DIN hold 4 4 ns
tr BCLK Rise time 5 4 ns
tf BCLK Fall time 5 4 ns

8.15 DSP/Mono PCM Timing in Slave Mode (see Figure 5)

PARAMETER IOVDD=1.8 V IOVDD=3.3 V UNIT
MIN MAX MIN MAX
tH (BCLK) BCLK high period 30 30 ns
tL (BCLK) BCLK low period 30 30 ns
ts(WS) WCLK set-up 4 4 ns
th(WS) WCLK hold 4 4 ns
td (DO-BCLK) BCLK to DOUT delay 22 20 ns
ts(DI) DIN set-up 5 5 ns
th(DI) DIN hold 5 5 ns
tr BCLK Rise time 5 4 ns
tf BCLK Fall time 5 4 ns

8.16 I2C Interface Timing (see Figure 6)

PARAMETER TEST CONDITIONS STANDARD-MODE FAST-MODE UNIT
MIN TYP MAX MIN TYP MAX
fSCL SCL clock frequency 0 100 0 400 kHz
tHD;STA Hold time (repeated) START condition. After this period, the first clock pulse is generated. 4.0 0.8 μs
tLOW LOW period of the SCL clock 4.7 1.3 μs
tHIGH HIGH period of the SCL clock 4.0 0.6 μs
tSU;STA Set-up time for a repeated START condition 4.7 0.8 μs
tHD;DAT Data hold time: For I2C bus devices 0 3.45 0 0.9 μs
tSU;DAT Data set-up time 250 100 ns
tr SDA and SCL Rise Time 1000 20+0.1Cb 300 ns
tf SDA and SCL Fall Time 300 20+0.1Cb 300 ns
tSU;STO Set-up time for STOP condition 4.0 0.8 μs
tBUF Bus free time between a STOP and START condition 4.7 1.3 μs
Cb Capacitive load for each bus line 400 400 pF

8.17 SPI Interface Timing

SS = SCL pin, SCLK = GPI1 pin, MISO = GPO1 pin, and MOSI = SDA pin. Specifications are at 25° C with DVDD = 1.8 V.
Specifications are at 25° C with DVDD = 1.8 V.
PARAMETER TEST CONDITIONS IOVDD=1.8V IOVDD=3.3V UNIT
MIN TYP MAX MIN TYP MAX
tsck SCLK Period(1) 50 40 ns
tsckh SCLK Pulse width High 25 20 ns
tsckl SCLK Pulse width Low 25 20 ns
tlead Enable Lead Time 25 20 ns
ttrail Enable Trail Time 25 20 ns
td;seqxfr Sequential Transfer Delay 25 20 ns
ta Slave DOUT (MISO) access time 25 20 ns
tdis Slave DOUT (MISO) disable time 25 20 ns
tsu DIN (MOSI) data set-up time 8 8 ns
th;DIN DIN (MOSI) data hold time 8 8 ns
tv;DOUT DOUT (MISO) data valid time 20 14 ns
tr SCLK Rise Time 4 4 ns
tf SCLK Fall Time 4 4 ns
(1) These parameters are based on characterization and are not tested in production.

8.18 Dissipation Ratings

PACKAGE RθJA TA POWER RATING
YZF 39.1 (TJ Max – TA)/ θJA
TLV320AIC3262 if_tim_los585.gif Figure 1. SPI Timing Diagram
TLV320AIC3262 master_tim_los585.gif Figure 2. I2S/LJF/RJF Timing in Master Mode
TLV320AIC3262 i2sljfrlf_los585.gif Figure 3. I2S/LJF/RJF Timing in Slave Mode
TLV320AIC3262 dsp_tim_los585.gif Figure 4. DSP/Mono PCM Timing in Master Mode
TLV320AIC3262 dsp_slave_los585.gif Figure 5. DSP/Mono PCM Timing in Slave Mode
TLV320AIC3262 td_i2c_los585.gif Figure 6. I2C Interface Timing Diagram

8.19 Typical Characteristics

8.19.1 Audio ADC Performance

TLV320AIC3262 G001_ADC_SNR_channel_gain.png Figure 7. ADC SNR vs Channel Gain Input-Referred
TLV320AIC3262 G003_ADC_DE_FFT.png Figure 9. ADC Differential Input to ADC FFT at –3 dBr vs Frequency
TLV320AIC3262 G002_ADC_SE_FFT.png Figure 8. ADC Single-Ended Input to ADC FFT at –3 dBr vs Frequency

8.19.2 Audio DAC Performance

TLV320AIC3262 G004_DAC_LO_FFT_0p9cm.png Figure 10. DAC to Line Output FFT Amplitude at –3 dBFS vs Frequency 10-kΩ Load
TLV320AIC3262 G005_extra_DAC_GCHP_FFT_0p9cm_32Ohm_1p8v.png Figure 12. DAC to Headphone Output (GCHP) FFT Amplitude at –3 dBFS vs Frequency 32-Ω Load
TLV320AIC3262 G007_DAC_GCHP_THDN_POut.png Figure 14. Total Harmonic Distortion + Noise vs Headphone (GCHP) Output Power 9-dB Gain
TLV320AIC3262 G009_DAC_REC_SNR_Pout_OPCM.png Figure 16. Differential Receiver SNR and Output Power vs Output Common Mode Setting 32-Ω Load
TLV320AIC3262 G005_DAC_GCHP_FFT_0p9cm_16Ohm_1p8v.png Figure 11. DAC to Headphone Output (GCHP) FFT Amplitude at –3 dBFS vs Frequency 16-Ω Load
TLV320AIC3262 G006_DAC_REC_FFT.png Figure 13. DAC to Differential Receiver Output FFT Amplitude at –3 dBFS vs Frequency 32-Ω Load
TLV320AIC3262 G008_DAC_REC_THDN_Pout.png Figure 15. Total Harmonic Distortion + Noise vs Differential Receiver Output Power 32-Ω Load

8.19.3 Class-D Driver Performance

TLV320AIC3262 G010_ClassD_THDN_Pout_Across_Gain.png Figure 17. Total Harmonic Distortion + Noise vs Output Power
Different Gain Settings, 8-Ω Load, SLVDD = SRVDD = SPK_V = 3.6 V
TLV320AIC3262 G011_ClassD_THDN_Pout_Across_Supply.png Figure 18. Total Harmonic Distortion + Noise vs Output Power
Different SLVDD/SRVDD/SPK_V Supplies, 8-Ω Load, 12-dB Gain

8.19.4 MICBIAS Performance

TLV320AIC3262 G012_MBIAS_mode2_cm0p9_ADVD3.png Figure 19. MICBIAS Mode 2, CM = 0.9 V, AVDD3_33 OP STAGE vs Micbias Load Current