SLVSCV6A January   2015  – February 2015 TPS24740 , TPS24741 , TPS24742

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematics
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Internal Power ORing of TPS24740
      2. 9.3.2  Enable and Over-voltage Protection
      3. 9.3.3  Current Limit and Power Limit During Start-up
      4. 9.3.4  Two Level Protection During Regular Operation
      5. 9.3.5  Dual Timer (TFLT and TINR)
      6. 9.3.6  Using SoftStart - IHGATE and TINR Considerations
      7. 9.3.7  Three Options for Response to a Fast Trip
      8. 9.3.8  Programmable Reverse Voltage Threshold
      9. 9.3.9  Analog Current Monitor
      10. 9.3.10 Power Good Flag
      11. 9.3.11 ORing MOSFET Status Indicator
      12. 9.3.12 Fault Reporting
    4. 9.4 Device Functional Modes
      1. 9.4.1 ORing Functional Modes
      2. 9.4.2 Hot Swap Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 30A Single channel OR then Hot Swap With Current Monitoring
      2. 10.2.2 Design Requirements
      3. 10.2.3 Detailed Design Procedure
        1. 10.2.3.1  Select RSNS and VSNS,CL Setting
        2. 10.2.3.2  Selecting the Fast Trip Threshold and Filtering
        3. 10.2.3.3  Selecting the Hot Swap FET(s)
        4. 10.2.3.4  Select Power Limit
        5. 10.2.3.5  Set Fault Timer
        6. 10.2.3.6  Check MOSFET SOA
        7. 10.2.3.7  Choose ORing MOSFET
        8. 10.2.3.8  Choose Reverse Current Threshold and Filtering
        9. 10.2.3.9  Choose Under Voltage and Over Voltage Settings
        10. 10.2.3.10 Selecting CIN, COUT, and CMIDDLE
        11. 10.2.3.11 Selecting D1 and D2
        12. 10.2.3.12 Ensuring Stability
        13. 10.2.3.13 Compute Tolerances
      4. 10.2.4 Application Curves
      5. 10.2.5 40 A Single Channel Hot Swap then ORing
        1. 10.2.5.1 Design Requirements
        2. 10.2.5.2 Design Procedure
          1. 10.2.5.2.1  Select RSNS and VSNS,CL Setting
          2. 10.2.5.2.2  Selecting the Fast Trip Threshold and Filtering
          3. 10.2.5.2.3  Selecting the Hot Swap FET
          4. 10.2.5.2.4  Select Power Limit
          5. 10.2.5.2.5  Set Fault Timer
          6. 10.2.5.2.6  Check MOSFET SOA
          7. 10.2.5.2.7  Checking Stability of Hot Swap Loop
          8. 10.2.5.2.8  Choose ORing MOSFET
          9. 10.2.5.2.9  Choose Reverse Current Threshold and Filtering
          10. 10.2.5.2.10 Choose Under Voltage and Over Voltage Settings
          11. 10.2.5.2.11 Selecting CIN, COUT, CMIDDLE, and Transient Protection
          12. 10.2.5.2.12 Adding CENHS
        3. 10.2.5.3 Application Curves
    3. 10.3 System Examples
      1. 10.3.1 TPS2474x in Battery Back Up
      2. 10.3.2 TPS2474x in Priority Muxing
      3. 10.3.3 TPS2474x with Multiple Loads and Multiple Supplies
      4. 10.3.4 Two Supplies Powering a Load
      5. 10.3.5 TPS2474x in Redundant DC/DC Applications
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Links
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

8 Specifications

8.1 Absolute Maximum Ratings

Unless otherwise noted, these apply over recommended operating junction temperature: -40°C ≤ TJ ≤ 125°C. (1)
MIN MAX UNIT
Input Voltage CP, BGATE –0.3 40 V
VDD,SET, FSTP,SENM, OUTH, C, RVSNP, RVSNM, A, ENHS, ENOR, FLTb, PGHS, OV, STAT –0.3 30 V
CP, BGATE to A –0.3 12 V
HGATE to OUTH –0.3 15 V
SET to VDD –0.3 0.3 V
SENM, FSTP to VDD –0.6 0.3 V
A to C –30 7 V
RVSNM, to A, C, RVSNP
RVSNP to A, C, RVSNM
–30 30 V
TINR, TFLT, PLIM, IMON, –0.3 3.6 V
IMONBUF –0.3 7 V
Sink Current FLTb, PGHS, STAT 5 mA
Source Current IMON, IMONBUF 5 mA
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

VALUE UNIT
V(ESD)(1) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2) ±1500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(3) ±500
(1) Electrostatic discharge (ESD) measures device sensitivity and immunity to damage caused by assembly line electrostatic discharges into the device.
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

These apply over recommended operating junction temperature: -40°C ≤ TJ ≤ 125°C.
MIN MAX UNIT
Input voltage VDD, SENM, SET(1), FSTP 2.5 18 V
ENHS, ENOR, FLTb, PGHS, STAT, OUTH 0 18
A, C, RVSNM, RVSNP; (2) 0.7 18
Sink current FLTb, PGHS, STAT 0 2 mA
Source current IMON 0 1 mA
External resistance PLIM 4.99 500
IMON 1 6
RVSNP 10 1000 Ω
FSTP 10 4000 Ω
SET 10 400 Ω
RIMON / RSET w/o RSTBL(4) 10 70
With appropriate RSTBL 3 10
External capacitor CP, FSTP, RVSNP 1 1000 nF
HGATE, BGATE (3) 0 1 µF
TINR, TFLT 1 nF
IMON 30 pF
IMONBUF 100 pF
Operating junction temperature, TJ –40 125 °C
(1) Do not apply voltage to these pins.
(2) For the HS then ORing application these pins may be below the recommended minimum during start-up. The part is designed to function properly under these scenarios. However the part should not be used with a bus voltage below the recommended voltage.
(3) External capacitance tied to HGATE, BGATE should be in series with a resistor no less than 1kΩ.
(4) Refer to RSTBL Requirement for RIMON / RSET < 10 describe in section Select RSNS and VSNS,CL Setting.

8.4 Thermal Information

THERMAL METRIC(1) TPS24740, TPS24741, TPS24742 UNIT
RGE (24 PINS)
RθJA Junction-to-ambient thermal resistance 34.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 38.4
RθJB Junction-to-board thermal resistance 12.9
ψJT Junction-to-top characterization parameter 0.5
ψJB Junction-to-board characterization parameter 12.9
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.2
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

Unless otherwise noted these limits apply to the following: -40°C ≤ TJ ≤ 125°C; 2.5V < VVDD , VOUTH < 18V; 0.7 V < VA , VC , VRVSNM < 18 V; VENHS = VENOR = 2 V, VOV = 0 V; VBGATE, VHGATE, VPGHS, VSTAT, VFLTb, and VIMONBUF are floating; CCP = 100 nF, CINR = 1 nF, CFLT = 1 nF, RSET = 44.2 Ω, RIMON = 2.98 kΩ, RFSTP = 200 Ω, RRV = 200 Ω, and RPLIM = 52 kΩ.
PARAMETER TEST CONDITION MIN TYP MAX UNIT
INPUT SUPPLY (VDD)
VUVR UVLO threshold, rising 2.2 2.32 2.45 V
VUVhyst UVLO hysteresis 0.1 V
IQON Supply current: IVDD+IA+IC+ IOUTH Device on, VENHS = VENOR = 2V 4.2 6 mA
HOT SWAP FET ENABLE (ENHS)
VENHS Threshold voltage, rising 1.3 1.35 1.4 V
VENHShyst Hysteresis 50 mV
IENHS Input Leakage Current 0 ≤ VENHS ≤ 30V –1 1 µA
BLOCKING (ORING) FET ENABLE (ENOR)
VENOR Threshold voltage, rising 1.3 1.35 1.4 V
VENORhyst Hysteresis 50 mV
IENOR Input leakage current 0 V ≤ VENOR ≤ 30V –1 0 1 µA
OVER VOLTAGE (OV)
VOVR Threshold voltage, rising 1.3 1.35 1.4 mV
VOVhyst Hysteresis 50 mV
IOV Input leakage current 0 ≤ VOV ≤ 30V –1 1 µA
POWER LIMIT PROGRAMING (PLIM)
VPLIM,BIAS Bias voltage Sourcing 10μA 0.66 0.675 0.69 V
VIMON,PL Regulated IMON voltage during power limit RPLIM = 52 kΩ; VSENM-OUTH=12V; 114.75 135 155.25 mV
RPLIM = 105 kΩ; VSENM-OUTH=12V; 56.95 67 77.05
RPLIM = 261 kΩ; VSENM-OUTH=12V; 18.9 27 35.1
RPLIM = 105 kΩ; VSENM-OUTH=2V; 341.7 402 462.3
RPLIM = 105 kΩ; VSENM-OUTH=18V; 38.25 45 51.75
SLOW TRIP THRESHOLD (SET)
VOS_SET Input referred offset (VSNS to VIMON scaling) RSET = 44.2Ω; RIMON=3kΩ to 1.2kΩ (corresponds to VSNS,CL=10mV to 25mV) –150 150 µV
VGE_SET Gain error (VSNS to VIMON scaling)(1) –0.4% 0.4%
FAST TRIP THRESHOLD PROGRAMMING (FSTP)
IFSTP FSTP input bias current VFSTP=12V 95 100 105 µA
VFASTRIP Fast trip threshold RFSTP = 200 Ω, VSNS when VHGATE 18 20 22 mV
RFSTP = 1 kΩ, VSNS when VHGATE 95 100 105
RFSTP = 4 kΩ, VSNS when VHGATE 380 400 420
CURRENT MONITOR and CURRENT LIMIT PROGRAMING (IMON)
VIMON,CL Slow trip threshold at summing node VIMON↑, when ITFLT starts sourcing 660 675 690 mV
CURRENT MONITOR (IMONBUF)
VOS_IMONBUF Buffer offset VIMON = 50mV to 675mV, Input referred –3 0 3 mV
GAINIMONBUF Buffer voltage gain ΔVIMONBUFF / ΔVIMON 2.97 2.99 3.01 V
BWIMONBUF Buffer closed loop bandwidth CIMONBUF = 75pF 1 MHz
HOT SWAP GATE DRIVER (HGATE)
VHGATE HGATE output voltage 5 ≤ VVDD ≤ 16V; measure VHGATE-OUTH 12 13.6 15.5 V
2.5V <VVDD < 5V;
16V <VVDD < 20V measure VHGATE-OUTH
7 7.95 15 V
VHGATEmax Clamp voltage Inject 10μA into HGATE, measure V(HGATE – OUTH) 12 13.9 15.5 V
IHGATEsrc Sourcing current VHGAT-OUTH = 2V-10V 44 55 66 µA
IHGATEfastSink Sinking current for fast trip VHGATE-OUTH = 2V -15V; V(FSTP – SENM) = 20mV 0.45 1 1.6 A
IHGATEsustSink Sustained sinking current Sustained, VHGATE-OUTH = 2V – 15V; VENHS = 0 30 44 60 mA
CURRENT SENSE NEGATIVE INPUT (SENM)
ISENM Input bias current VSENM = 12V 15 20 µA
INRUSH TIMER (TINR)
ITINRsrc Sourcing current VTINR = 0V, In power limit or current limit 8 10.25 12.5 µA
ITINRsink Sinking current VTINR = 2V, In regular operation 1.5 2 2.5 µA
VTINRup Upper threshold voltage Raise VTINR until HGATE starts sinking 1.3 1.35 1.4 V
VTINRlr Lower threshold voltage Raise VTINR to 2V. Reduce VTINR until ITINR is sourcing. 0.33 0.35 0.37 v
RTINR Bleed down resistance VVDD = 0V, VTINR = 2V 70 104 130
ITINR-PD Pulldown current VTINR = 2V, when VENHS = 0V 2 4.2 7 mA
VIMON,TINR See (2) RPLIM = 52kΩ, VSENM = 12V, VOUTH = 0 V. Raise IMON voltage and record IMON when TINR starts sourcing current 47.75 90 132.25 mV
VIMON,PL See (2) RPLIM = 52kΩ, VSENM = 12V, VOUTH = 0 V. Raise IMON voltage and record IMON when IHGATE starts sinking current. 114.75 135 155.25 mV
ΔVIMON,TINR See (2) RPLIM = 52kΩ, VSENM = 12V, VOUTH = 0 V.
ΔVIMON,TINR = VIMON,PL – VIMON,TINR
23 45 67 mV
FAULT TIMER (TFLT)
ITFLTsrc Sourcing current VTFLT = 0V, PGHS is high and in overcurrent 8 10.25 12.5 µA
ITFLTsink Sinking current VTFLT = 2V, Not in overcurrent 1.5 2 2.5 µA
VTFLTup Upper threshold voltage Raise VTFLT until HGATE starts sinking 1.3 1.35 1.4 V
RTFLT Bleed down resistance VVDD = 0V, VTFLT = 2V 70 104 130
ITFLT-PD Pulldown current VTFLT = 2V, when VENHS = 0V 2 5.6 7 mA
HOT SWAP OUTPUT (OUTH)
IOUTH, BIAS Input bias current VOUTH = 12V 30 70 µA
CHARGE PUMP FOR BGATE (CP)
ICP CP Equivalent charging resistance VA = 12 V , 1mA CP current 5 8.7 12.5
VCP CP Output voltage Max(VA, VC, VVDD) > 6 V, Measure VCP-A 9 10 11 V
6V > Max(VA, VC, VVDD) > 4V, Measure VCP-A 5 5.9 11
Max(VA, VC, VVDD) = 2.5 V, Measure VCP-A 8 9.8 11
BLOCKING/ORING GATE DRIVER (BGATE)
IBGATE_CHRG BGATE Pull up current VAC = 20mV, pulse 30 mA
VAC = 20mV, sustained 0.2 0.3 0.4 mA
IBGATEsustSink BGATE Sinking current Fast turnoff, VBGATE-A = 7V 0.4 0.9 1.4 A
Sustained, VBGATE-A = 2V to 11V 19 35 65 mA
BLOCKING/ORing ANODE (A)
IA Input current(3) 2.5 V ≤ VA ≤ 18V 3 mA
VA_UVLO Undervoltage lockout VA increasing and VVDD=VC=0.7V 1.85 1.93 2.05 V
VA_UVLO_hyst Undervoltage lockout hysteresis 0.1 V
BLOCKING/ORing CATHODE (C)
IC Input current(3) 2.5 V ≤ VC ≤ 18V 3 mA
VC_UVLO Undervoltage lockout VC increasing and VDD=VA=0.7V 1.85 1.93 2.05 V
VC_UVHyst Hysteresis 100 mV
VFWDTH Forward turn-on voltage Measure VAC when VBGATE ↑ 7.5 10 12.5 mV
POSITIVE INPUT OF REVERSE VOLTAGE COMPARATOR (RVSNP)
IRVSNP RVSNP Input bias current VRVSNP = 12V, sinking current; 0.7V < VA,
VRVSNM < 20V
93 99 105 µA
VRVTRIP1 Reverse Comparator Offset RRV=10Ω, Measure VRVSNP-RVSNM, when BGATE↓ -1 0 1 mV
NEGATIVE INPUT OF REVERSE VOLTAGE COMPARATOR (RVSNM)
IRVSNM Leakage current –2 2 µA
FAULT INDICATOR (FLTb)
VOL_FLTb Output low voltage Sinking 2 mA 0.11 0.25 V
IFLTb Input Leakage Current VFLTb = 0V, 30V –1 0 1 µA
VHSFLT_IMON VIMON threshold to detect Hot Swap FET short VENHS = 0V, Measured VIMON ↑ to GND when FLTb ↓ 88 101 115 mV
VHSFL_hyst Hysteresis 25 mV
VBFET, OPEN, FLT A-C threshold to detect OPEN Blocking/ORing FET fault VENOR=3V, Measure VA-C to FLTb↓, VCP-A > 7V 350 410 490 mV
VCP_FLT CP fault threshold Measure VCP-A ↓ when FLTb↓, 4V ≤ VVDD < 18V 5 5.5 6 V
Measure VCP-A ↓ when FLTb↓, 2.5V < VVDD < 4V 3.3 3.75 4.2 V
VCP, FLT, hyst Hysteresis 4V ≤ VVDD < 18V 1.5 V
2.5V < VVDD < 4V 1.1 V
HOT SWAP POWER GOOD OUTPUT (PGHS)
VPGHSth PGHS Threshold Measure VSENM-OUTH ↓ when PGHS↑ 170 270 375 mV
VPGHShyst PGHS hysteresis VSENM-OUTH 80 mV
VOL_PGHS PGHS Output low voltage Sinking 2mA 0.11 0.25 V
IPGHS PHGS Input leakage current VPGHS=0V to 30V –1 0 1 µA
STATUS INDICATOR (STAT)
VSTATon Status ON threshold 4V ≤ VVDD < 20V , Measure VBGATE – A ↑, when STAT↑ 5 6 7 V
2.5V < VVDD < 4V , Measure VBGATE – A ↑, when STAT↑ 3.6 4 4.4 V
VSTAToff Status OFF threshold 4V < VVDD < 20V , Measure VBGATE – A ↓, when STAT↓ 4 5 6 V
2.5V <VVDD < 4V , Measure VBGATE – A ↑, when STAT↑ 2 2.7 3.4 V
VSTAT,LOWoff STAT Output low voltage Sinking 2 mA 0.11 0.25 V
ISTAT,LEAK STAT Input leakage current VSTAT = 0 V, 30 V –1 0 1 µA
THERMAL SHUTDOWN (OTSD)
TOTSD Thermal shutdown threshold Temperature rising 140 °C
TOTSD,HYST Hysteresis 10 °C
(1) Specified by characterization, not production tested.
(2) For more detail on the definition and usage of these parameters refer to section Using SoftStart – IHGATE and TINR Considerations.
(3) The TPS2474x is set up to be powered from A, C, or VDD depending on the biasing condition. See Internal Power ORing of TPS24740 To obtain the total current draw from A, C, VDD, and OUTH refer to the spec for Input Supply (VDD)..

8.6 Timing Requirements

PARAMETER TEST CONDITION MIN TYP MAX UNIT
INPUT SUPPLY (VDD)
DEGLUVLO UVLO deglitch Both rising and falling 14 µs
HOT SWAP FET ENABLE (ENHS)
DEGLENHS Deglitch time Both rising and falling 2.2 3.8 5.5 µs
BLOCKING (ORING) FET ENABLE (ENOR)
DEGLENOR Deglitch time Both rising and falling 1.7 3.5 5 µs
OVER VOLTAGE (OV)
DEGLOV Deglitch time Both rising and falling 2.2 3.9 5.7 µs
HOT SWAP GATE DRIVER (HGATE)
tHGATEdly Turn on delay CP ↑ to IHGATE sourcing 1.9 ms
FAST TRIP (FSTP)
tFastOffDly Fast turn-off delay V(FSTP – SENM) : –5mV to 5mV, CHGATE = 0 pF 600 ns
V(FSTP – SENM) : -20mV to 20mV CHGATE = 0 pF 300
tFastOffDur Strong pull down current duration 53 63 73 µs
INRUSH TIMER (TINR)
NRETRY Number of TINR cycles before retry TPS24741 only 64
RETRYDUTY Retry duty cycle TINR not connected to TFLT 0.35%
TINR connected to TFLT 0.7%
BLOCKING/ORING GATE DRIVER (BGATE)
tFastOffDur Strong pull down current duration 10 15 20 µs
tFastOnDur Strong pull up current duration 10 20 30 µs
POSITIVE INPUT OF REVERSE VOLTAGE COMPARATOR (RVSNP)
tFastOffDly Turn-off delay V(RVSNP –RVSNM) = –5mV → 5mV,
CBGATE = 0 pF
340 ns
V(RVSNP –RVSNM) = –20mV → +20mV,
CBGATE = 0 pF
150
FAULT INDICATOR (FLTb)
tFLT_degl HS / OR Fault Deglitch Both HS and ORing faults 2.2 3.9 5.3 ms
tFLT_CP_degl CP fault deglitch 26.5 32 37.2 ms
HOT SWAP POWER GOOD OUTPUT (PGHS)
tPGHSdegl PGHS deglitch time Rising 0.7 1 1.3 ms
Falling 7 8 9
STATUS INDICATOR (STAT)
tSTATdegl STAT Delay (deglitch) time Rising or falling edge 0.4 0.95 1.5 ms

8.7 Typical Characteristics

Unless otherwise noted these limits apply to the following: VVDD = VA = VC = VRVSNM = VOUTH = 12 V; VENHS = VENOR = 2 V, VOV = 0 V; VBGATE, VHGATE, VPGHS, VSTAT, VFLTb, and VIMONBUF are floating; CCP = 100 nF, CINR = 1 nF, CFLT = 1 nF, RSET = 44.2 Ω, RIMON = 2.98 kΩ, RFSTP = 200 Ω, RRV = 200 Ω, and RPLIM = 52 kΩ.
TPS24740 TPS24741 TPS24742 C001_SLVSCV6.png
Iq = IVDD + IA + IC + IOUTH
Figure 1.
TPS24740 TPS24741 TPS24742 C003_SLVSCV6.png
Figure 3.
TPS24740 TPS24741 TPS24742 C005_SLVSCV6.png
IPGHS = 2mA
Figure 5.
TPS24740 TPS24741 TPS24742 C007_SLVSCV6.png
Figure 7.
TPS24740 TPS24741 TPS24742 C009_SLVSCV6.png
VIMON during Power Limiting
Figure 9.
TPS24740 TPS24741 TPS24742 C011_SLVSCV6.png
VHGATE - VOUTH = 2V
Figure 11.
TPS24740 TPS24741 TPS24742 C013_SLVSCV6.png
VBGATE - VA = 4V
Figure 13.
TPS24740 TPS24741 TPS24742 C015_SLVSCV6.png
Sustained Sink Current
Figure 15.
TPS24740 TPS24741 TPS24742 C017_SLVSCV6.png
Figure 17.
TPS24740 TPS24741 TPS24742 C002_SLVSCV6.png
Figure 2.
TPS24740 TPS24741 TPS24742 C004_SLVSCV6.png
ISTAT = 2mA
Figure 4.
TPS24740 TPS24741 TPS24742 C006_SLVSCV6.png
Figure 6.
TPS24740 TPS24741 TPS24742 C008_SLVSCV6.png
Figure 8.
TPS24740 TPS24741 TPS24742 C010_SLVSCV6.png
VHGATE - VOUTH = 10V
Figure 10.
TPS24740 TPS24741 TPS24742 C012_SLVSCV6.png
VBGATE - VA = 10V
Figure 12.
TPS24740 TPS24741 TPS24742 C014_SLVSCV6.png
Sustained Sink Current
Figure 14.
TPS24740 TPS24741 TPS24742 C016_SLVSCV6.png
Figure 16.
TPS24740 TPS24741 TPS24742 C018_SLVSCV6.png
VHGATE-OUTH =4V
Figure 18.