SLVSGP9 October   2023 TPS25730

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
      1. 6.1.1 TPS25730D and TPS25730S - Absolute Maximum Ratings
      2. 6.1.2 TPS25730D - Absolute Maximum Ratings
      3. 6.1.3 TPS25730S - Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
      1. 6.3.1 TPS25730D - Recommended Operating Conditions
      2. 6.3.2 TPS25730S - Recommended Operating Conditions
    4. 6.4  Recommended Capacitance
    5. 6.5  Thermal Information
      1. 6.5.1 TPS25730D - Thermal Information
      2. 6.5.2 TPS25730S - Thermal Information
    6. 6.6  Power Supply Characteristics
    7. 6.7  Power Consumption
    8. 6.8  PPHV Power Switch Characteristics - TPS25730D
    9. 6.9  PP_EXT Power Switch Characteristics - TPS25730S
    10. 6.10 Power Path Supervisory
    11. 6.11 CC Cable Detection Parameters
    12. 6.12 CC PHY Parameters
    13. 6.13 Thermal Shutdown Characteristics
    14. 6.14 ADC Characteristics
    15. 6.15 Input/Output (I/O) Characteristics
    16. 6.16 I2C Requirements and Characteristics
    17. 6.17 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  USB-PD Physical Layer
        1. 8.3.1.1 USB-PD Encoding and Signaling
        2. 8.3.1.2 USB-PD Bi-Phase Marked Coding
        3. 8.3.1.3 USB-PD BMC Transmitter
        4. 8.3.1.4 USB-PD BMC Receiver
        5. 8.3.1.5 Squelch Receiver
      2. 8.3.2  Power Management
        1. 8.3.2.1 Power-On And Supervisory Functions
        2. 8.3.2.2 VBUS LDO
      3. 8.3.3  Power Paths
        1. 8.3.3.1 TPS25730D Internal Sink Path
        2. 8.3.3.2 TPS25730S - External Sink Path Control PP_EXT
      4. 8.3.4  Cable Plug and Orientation Detection
      5. 8.3.5  Overvoltage Protection (CC1, CC2)
      6. 8.3.6  Default Behavior Configuration (ADCIN1, ADCIN2)
      7. 8.3.7  ADC
      8. 8.3.8  Digital Interfaces
      9. 8.3.9  Digital Core
      10. 8.3.10 I2C Interface
        1. 8.3.10.1 I2C Interface Description
          1. 8.3.10.1.1 I2C Clock Stretching
          2. 8.3.10.1.2 Unique Address Interface
          3. 8.3.10.1.3 Pin Strapping to Configure Default Behavior
      11. 8.3.11 Minimum Voltage Configuration
      12. 8.3.12 Maximum Voltage Configuration
      13. 8.3.13 Sink Current Configuration
      14. 8.3.14 Autonegotiate Sink Minimum Power
      15. 8.3.15 Extended Sink Capabilities Power Delivery Power
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power States
    5. 8.5 Schottky for Current Surge Protection
    6. 8.6 Thermal Shutdown
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Supported Sink Power Configurations
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 3.3-V Power
        1. 9.3.1.1 VIN_3V3 Input Switch
      2. 9.3.2 1.5-V Power
      3. 9.3.3 Recommended Supply Load Capacitance
    4. 9.4 Layout
      1. 9.4.1 TPS25730D - Layout
        1. 9.4.1.1 Layout Guidelines
          1. 9.4.1.1.1 Top Placement and Bottom Component Placement and Layout
        2. 9.4.1.2 Layout Example
        3. 9.4.1.3 Component Placement
        4. 9.4.1.4 Routing VBUS, VIN_3V3, LDO_3V3, LDO_1V5
        5. 9.4.1.5 Routing CC and GPIO
      2. 9.4.2 TPS25730S - Layout
        1. 9.4.2.1 Layout Guidelines
          1. 9.4.2.1.1 Top Placement and Bottom Component Placement and Layout
        2. 9.4.2.2 Layout Example
        3. 9.4.2.3 Component Placement
        4. 9.4.2.4 Routing VBUS, PPHV, VIN_3V3, LDO_3V3, LDO_1V5
        5. 9.4.2.5 Routing CC and GPIO
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

USB-PD BMC Transmitter

The TPS25730 transmits and receives USB-PD data over one of the CCy pins for a given CC pin pair (one pair per USB Type-C port). The CCy pins are also used to determine the cable orientation and maintain the cable/device attach detection. Thus, a DC bias exists on the CCy pins. The transmitter driver overdrives the CCy DC bias while transmitting, but returns to a Hi-Z state, allowing the DC voltage to return to the CCy pin when it is not transmitting. While either CC1 or CC2 can be used for transmitting and receiving, during a given connection only, the one that mates with the CC pin of the plug is used, so there is no dynamic switching between CC1 and CC2. Figure 8-7 shows the USB-PD BMC TX and RX driver block diagram.

GUID-4EFFE802-5FA5-4764-A7B2-DB3E64C34966-low.gif Figure 8-7 USB-PD BMC TX/Rx Block Diagram

Figure 8-8 shows the transmission of the BMC data on top of the DC bias. Note that the DC bias can be anywhere between the minimum and maximum threshold for detecting a Sink attach. This note means that the DC bias can be above or below the VOH of the transmitter driver.

GUID-2C563B90-A2FD-4896-B82E-0C5DB6F471A7-low.gifFigure 8-8 TX Driver Transmission with DC Bias

The transmitter drives a digital signal onto the CCy lines. The signal peak, VTXHI, is set to meet the TX masks defined in the USB-PD Specifications. Note that the TX mask is measured at the far-end of the cable.

When driving the line, the transmitter driver has an output impedance of ZDRIVER. ZDRIVER is determined by the driver resistance and the shunt capacitance of the source and is frequency dependent. ZDRIVER impacts the noise ingression in the cable.

Figure 8-9 shows the simplified circuit determining ZDRIVER. It is specified such that noise at the receiver is bounded.

GUID-2FCE93D7-3A8B-47A1-A3E2-3C48557E39F9-low.gifFigure 8-9 ZDRIVER Circuit