SLVSA38B December 2009 – July 2017 TPS43331-Q1
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| Unregulated input(3) | VBAT, VBATP | –0.3 | 40 | V |
| Unregulated power supply(3) | VINSB, VINLR | –0.3 | 40 | V |
| High side output(4) | HSD | –0.3 | 40 | V |
| Low voltage warning input | LVWIN | –0.3 | 40 | V |
| Switched linear regulator | VLR | –0.3 | 15 | V |
| Bootstrap capacitor | VCP | –0.3 | 18 | V |
| Logic level or low voltage signals | PGDLY, CSLEW, VBATW, RST, EN, VSTBYS, VSTBY, VLRS, SYNCH, I2CID, SCL, SDA, VCMP1, VCMP2, VFB1, VFB2(3) | –0.3 | 5.5 | V |
| ISHI1, ISHI2, ISLO1, ISLO2(3) | –0.3 | 10 | ||
| CBS1, CBS2, VGT1, VGT2 | –0.3 | 40 | ||
| VGB1, VGB2 | –0.3 | 10 | ||
| PH1, PH2(4) | –1 | 40 | ||
| Operating junction temperature range, TJ | –40 | 150 | °C | |
| Storage temperature range, Tstg | –65 | 150 | °C | |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | 2000 | V |
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| Unregulated input | VBAT, VBATP | 5 | 30 | V | |
| Unregulated power supply | VINSB, VINLR | 1.8 | 30 | V | |
| High side output | HSD | 5 | 30 | V | |
| Low voltage warning input | LVWIN | 5 | 30 | V | |
| Linear regulator | VLR | 1.2 | 12 | V | |
| Standby regulator | VSTBY, VSTBYS | 1.2 | 5 | V | |
| Bootstrap capacitor | VCP | 16 | V | ||
| Logic level or low voltage signals | PGDLY, CSLEW, VBATW, RST, EN, VLRS, SYNCH, I2CID, SCL, SDA, VCMP1, VCMP2, VFB1, VFB2 | 4.5 | 5.3 | V | |
| ISHI1, ISHI2, ISLO1, ISLO2 | 1.2 | 9 | V | ||
| CBS1, CBS2, VGT1, VGT2 | 5 | 38 | V | ||
| VGB1, VGB2 | 3 | 8 | V | ||
| PH1, PH2 | –1 | 30 | V | ||
| TA | Operating ambient temperature(1) | –40 | 125 | °C | |
| THERMAL METRIC(1) | TPS43331-Q1 | UNIT | |
|---|---|---|---|
| DAP (HTSSOP) | |||
| 38 PINS | |||
| RθJA | Junction-to-ambient thermal resistance(2) | 25 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance(3) | 10 | °C/W |
| RθJB | Junction-to-board thermal resistance | — | °C/W |
| ψJT | Junction-to-top characterization parameter | — | °C/W |
| ψJB | Junction-to-board characterization parameter | — | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| I2CID Serial interface ID address input | ||||||
| VIH | Input high threshold | 2 | V | |||
| VIL | Input low threshold | 0.8 | V | |||
| VHYS | Hysteresis | 0.3 | 0.8 | V | ||
| ILKG | Input leakage current | I2CID = 3.3 V | –1 | 1 | µA | |
| SCL Serial clock input for synchronization | ||||||
| VIH | Input high threshold | 2 | V | |||
| VIL | Input low threshold | 0.8 | V | |||
| VHYS | Hysteresis | 0.3 | 0.8 | V | ||
| ILKG | Input leakage current | 0.3 V ≤ VSCL ≤ 3.0 V | –1 | 1 | µA | |
| CSCLIN | Input line capacitance | 10 | pF | |||
| SDA Serial communications data line | ||||||
| VIH | Input high threshold | 2 | V | |||
| VIL | input low threshold | 0.8 | V | |||
| VHYS | Hysteresis | 0.3 | 0.8 | V | ||
| ILeakage | Leakage current | 0.3 V ≤ VSDA ≤ 3.0 V | –1 | 1 | µA | |
| VSAT | Output saturation voltage | IOL = 3 mA | 0.4 | V | ||
| IOL = 6 mA | 0.6 | V | ||||
| CSDAIN | Input line capacitance | 10 | pF | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| Switch mode regulators (Channel 1) | ||||||
| IO | Output current | 4 | A | |||
| VO | Regulated output voltage range | 1.2 | 10 | V | ||
| VFB1 | Feedback voltage input | 980 | 1020 | mV | ||
| VOTOL | Regulated output voltage tolerance | IO = 100% to 10% IO(max), Includes external feedback resistors | –5% | 5% | ||
| VISCTH | Short circuit current, voltage threshold(1) | 60 | 120 | mV | ||
| VDO | Dropout voltage(2) | IO = IO(max), VBAT = 9 V, Includes drop due to VISCTH | 400 | mV | ||
| dV/dt | Output voltage soft-start slew rate(3) | Step response on regulator enable, IO = IO(max) | 10 | V/ms | ||
| 5% | ||||||
| VP_SC | Overshoot (4) | IO = ISC(max), Remove short | 5% | |||
| VP_TR | Load transient response(4) | IO = 10% to 100% IO(max) | –5% | |||
| IO = 100% to 10% IO(max) | 5% | |||||
| IVGT1_SRC | Gate drive source current (high side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 210 | 330 | mA | |
| IVGT1_SINK | Gate drive sink current (high side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 500 | 1020 | mA | |
| IVGB1_SRC | Gate drive source current (low side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 90 | 135 | mA | |
| IVGB1_SINK | Gate drive sink current (low side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 440 | 1300 | mA | |
| Switch mode regulators (Channel 2), SW2EN = 1 (unless otherwise noted) | ||||||
| IO | Output current | 4.0 | A | |||
| VO | Regulated output voltage range | 1.2 | 10 | V | ||
| VFB1 | Feedback voltage input | 980 | 1020 | mV | ||
| VOTOL | Regulated output voltage tolerance | IO = 100% to 10% IO(max), Includes external feedback resistors | –5% | 5% | ||
| VISCTH | Short circuit current, voltage threshold(1) | 60 | 120 | mV | ||
| VDO | Dropout voltage(2) | IO = IO(max), VBAT = 9 V, Includes drop due to VISCTH | 400 | mV | ||
| dV/dt | Output voltage soft-start slew rate(3) | Step response on regulator enable, IO = IO(max) | 10 | V/ms | ||
| VP_SC | Overshoot(4) | IO = ISC(max), Remove short | 5% | |||
| VP_TR | Load transient response(4) | IO = 10% to 100% IO(max) | –5% | |||
| IO = 100% to 10% IO(max) | 5% | |||||
| IVGT2_SRC | Gate drive source current (high side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 210 | 330 | mA | |
| IVGT2_SINK | Gate drive sink current (high side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 500 | 1020 | mA | |
| IVGB2_SRC | Gate drive source current (low side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 90 | 135 | mA | |
| IVGB2_SINK | Gate drive sink current (low side) | VGT1 = VGB1 = 6 V, Measure time calculate current | 440 | 1300 | mA | |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| IO | Output current | Active mode | 5 | 300 | mA | |
| Standby mode | 0.05 | 300 | ||||
| VO | Regulated output voltage range | VINSB = (VO + VDO) to 18 V, IO = IO(max)(2) to IO(min), TA = –40°C to +50°C, VINSB = 18 V to 26.5 V, IO = IO(max)(3) to IO(min) |
1.2 | 3.6 | V | |
| VSTBYS | Feedback input voltage for standby regulator | 980 | 1020 | mV | ||
| VSTBY | Regulated output voltage tolerance | IO = IO(max) to IO(min), VO + VDO < VINSB < 18 V, 1% nominal (3% worse case) tolerance resistors |
–5% | 5% | ||
| IO = IO(max) to IO(min), 18 V < VINSB < 26.5 V | 8% | |||||
| LR | Load regulation | IO = IO(max) to IO(min) | –4% | 0% | ||
| SR | Line regulation | IO = IO(max), VO + VDO < VINSB < 18 V | –4% | 4% | ||
| ISC | Short circuit current limit | VSTBY = 0 V(4) | 310 | 1400 | mA | |
| VDO | Dropout voltage(2) | IO = 300 mA | 1200 | mV | ||
| VLVRTH | Low-voltage reset threshold | Lower VO until goes low | 900 | 950 | mV | |
| TSD | Thermal shutdown(1) | 150 | 210 | °C | ||
| THYS | Hysteresis | 5 | 15 | °C | ||
| ΔV/ΔT | Output voltage slew rate(3) | Step response on regulator, IO = IO(min) | 10 | V/mS | ||
| VOP_SC | Overshoot(1) | IO = ISC(min), Remove short | 5% | |||
| VP_TR | Load transient response (1) | Active mode, VSTBY = 1.2 V, CVSTBY = 1 µF, Δt = 10 µs, IO = IO(min) to IO(max), IO = IO(max) to IO(min) |
–6% | 6% | ||
| Active mode, VSTBY = 3.6 V, CVSTBY = 1 µF, Δt = 10 µs, IO = IO(min) to IO(max), IO = IO(max) to IO(min) |
–6% | 6% | ||||
| Standby mode, VSTBY = 1.2 V, CVSTBY = 1 µF, Δt = 10 µs, IO = –100 mA to IO(max), IO = IO(max) to –100 mA |
–6% | 6% | ||||
| Standby mode, VSTBY = 3.6 V, CVSTBY = 1 µF, Δt = 10 µs, IO = –100 mA to IO(max), IO = IO(max) to –100 mA |
–6% | 6% | ||||
| VPRSS | Power supply rejection ratio(1) | IO = 0.5×IO(max), fo = 120 Hz to 10 kHz, VINSB = 14-V DC and 1-V AC (p – p) | 50 | dB | ||
| IO = 0.5×IO(max), fo = 20 to 20 kHz, VINSB = 14-V DC and 1-V AC (p – p) | 45 | |||||
| VN | Output noise | 100-kHz low-pass filter, fo = 20 Hz to 100 kHz, IVSTBY = –5 mA | 400 | uV | ||
| 100-kHz low-pass filter, fo = 20 Hz to 20 kHz, IVSTBY = –5 mA | 200 | |||||
| ttr | Output voltage transient response | IO = IO(min) to IO(max), CO(max) | 40 | µs | ||
| CO | Output capacitance | CO(nom) = 1 µF, 16 V | 0.53 | 1.15 | µF | |
| RESR | Output capacitance ESR | f = 1 kHz, TA = 125°C | 8.75 | Ω | ||
| DF | Output capacitor dissipation factor | f = 1 kHz, TA = –40°C | 1% | |||
| f = 1 kHz, TA = 25°C | 3.5% | |||||
| f = 1 kHz, TA = 125°C | 5.5% | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| IO | Output current | 5 | 650 | mA | ||
| VO | Regulated output voltage range | VINLR = (VO + VDO) to 18 V, IO = IO(max) to IO(min), TA = –40°C to +50°C, VINLR = 18 V to 26.5 V, IO = IO(max) to IO(min) |
1.2 | 8.5 | V | |
| VLRS | Feedback input voltage | 980 | 1020 | mV | ||
| VLR | Output voltage tolerance | IO = IO(max) to IO(min), VO + VDO < VINLR < 18 V, 1% nominal (3% worse case) tolerance resistors |
–5% | 5% | ||
| IO = IO(max) to IO(min), VINLR = 18 V to 26.5 V | 8% | |||||
| LR | Load regulation | IO = IO(max) to IO(min) | –4% | 1% | ||
| SR | Line regulation | IO = IO(max), VO + VDO < VINLR < 18 V | –4% | 4% | ||
| IO = IO(max), 18 V < VINLR < 26.5 V | –4% | 4% | ||||
| ISC | Short circuit current limit | VLR = 0 V(4) | 0.7 | 2.7 | A | |
| VDO | Dropout voltage(2) | IO = –200 mA | 400 | mV | ||
| IO = –600 mA | 1.7 | V | ||||
| TSD | Thermal shutdown(1) | 150 | 210 | ºC | ||
| THYS | Hysteresis | 5 | 15 | ºC | ||
| VOP_SC | Overshoot | IO = ISC(min), Remove short | 5% | |||
| VP_TR | Load transient response(1) | VLR =1.2 V, CVLR = 1 µF, Δt = 10 µs, IO = IO(min) to IO(max), IO = IO(max) to IO(min) |
–6% | 6% | ||
| VLR = 8.5 V, CVLR = 1 µF, Δt = 10 µs, IO = IO(min) to IO(max), IO = IO(max) to IO(min) |
–6% | 6% | ||||
| VPRSS | Power supply rejection ratio(1) | IO = 0.5×IO(max), fo = 120 Hz to 10 kHz, VINLR = 14-V DC and 1-V AC (p – p) |
50 | dB | ||
| IO = 0.5×IO(max), fo = 20 Hz to 20 kHz, VINLR = 14-V DC and 1-V AC (p – p) |
45 | |||||
| VN | Output noise(1) | 100-kHz low-pass filter, fo = 20 Hz to 100 kHz, IVLR = –5 mA | 400 | uV | ||
| Weighted filter, fo = 20 Hz to 20 kHz, IVLR = –5 mA | 200 | |||||
| ttr | Output voltage transient response(1) | IO = IO(min) to IO(max), CO(max) | 40 | µs | ||
| CO | Output capacitance(1) | CO(nom) = 1 µF, 16 V | 0.53 | 1.15 | µF | |
| RESR | Output capacitance ESR(1) | f = 1 kHz, TA = 125°C | 8.75 | Ω | ||
| DF | Output capacitor dissipation factor(1) | f = 1 kHz, TA = –40°C | 1% | |||
| f = 1 kHz, TA = 25°C | 3.5% | |||||
| f = 1 kHz, TA = 125°C | 5.5% | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VSAT | HSD output saturation voltage | IHSD = –300 mA | 0.6 | V | ||
| IHSD = –450 mA, t = 0.5 s | 1.2 | V | ||||
| ILKG | Leakage current | HSD1EN = 0, HSD = 0 V | –5 | 5 | µA | |
| HSD1EN = 0, RHSD = 20 Ω to –1 V | –100 | µA | ||||
| HSD1EN = 0, VBAT = HSD | –100 | 100 | µA | |||
| HSD1EN = 0, VBAT = HSD = 34 V | –100 | 100 | µA | |||
| VBAT = open, CVBAT = 1 mF, HSD = 18 V | 0 | 10 | mA | |||
| GND = open, RHSD = 20 Ω to –1 V | (1) | 15 | mA | |||
| ISTG | High-side short circuit current | HSD = 0 V | 0.310 | 1.4 | A | |
| HSD = VBAT | –2 | 2(2) | mA | |||
| TSD | HSD thermal shutdown(3) | IHSD = –100 µA | 150 | 190 | ºC | |
| THYS | Hysteresis | 5 | 15 | ºC | ||
| NO. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| RST Reset timing | |||||||
| 1 | tenrst | Reset enable time | 0 | µs | |||
| 2 | tPGDLY | Reset delay time | CPGDLY(nom) = 100 pF | 25 | 100 | µs | |
| 3 | tpor | Internal power on reset | VSTBY in regulation to RST deasserted delay | 5 | ms | ||
| 4 | tf | Reset fall time | CRST = 50 pF | 2 | µs | ||
| VSTBY Standby regulator de-glitch timer | |||||||
| 5 | tlvcp | De-glitch filter time | 5 | 20 | µs | ||
| PGDLY Power good discharge time | |||||||
| tdch | Power good delay capacitor discharge time | CPGDLY = 0.01 µF | 1 | µs | |||
| VBATW low input voltage warning | |||||||
| 6 | tprlvw | Low voltage rising output indicator propagation delay | 1 | µs | |||
| 7 | tpfovsd | Overvoltage shutdown propagation delay | 1 | µs | |||
| 8 | tpflvw | Low voltage falling output warning propagation delay | 1 | µs | |||
| 9 | tf | Fall time | 1 | µs | |||
| NO. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| SCL Serial clock timing | |||||||
| 1 | fSCL | Serial clock frequency | Standard mode | 0 | 100 | kHz | |
| Fast mode | 0 | 400 | kHz | ||||
| 2 | tHD, STA | Hold time for repeated start | Standard mode | 4 | µs | ||
| Fast mode | 0.6 | µs | |||||
| 3 | tLOW | Clock low pulse width | Standard mode | 4.7 | µs | ||
| Fast mode | 1.3 | µs | |||||
| 4 | tHIGH | Clock high pulse width | Standard mode | 4 | µs | ||
| Fast mode | 0.6 | µs | |||||
| 5 | tSU, STA | Setup time for repeated start | Standard mode | 4.7 | µs | ||
| Fast mode | 0.6 | µs | |||||
| 6 | tr, SCL | Clock rise time | Standard mode | 1 | µs | ||
| Fast mode, CSCL = 10 pF | 21(3) | 300 | ns | ||||
| Fast mode, CSCL = 400 pF | 60 | 300 | ns | ||||
| 7 | tf, SCL | Clock fall time | Standard mode | 0.3 | µs | ||
| Fast mode, CSCL = 10 pF | 21 | 300 | ns | ||||
| Fast mode, CSCL = 400 pF | 60 | 300 | ns | ||||
| 8 | tSP,SCL | Clock input noise pulse | 50 | ns | |||
| SDA Serial communications data line | |||||||
| 9 | tSU, DAT | Serial data setup time | Standard mode | 250 | ns | ||
| Fast mode | 100 | ns | |||||
| 10 | tr, SDA | Data rise time | Standard mode | 1 | µs | ||
| Fast mode, CSDA = 10 pF | 21 | 300 | ns | ||||
| Fast mode, CSDA = 400 pF | 60 | 300 | ns | ||||
| 11 | tf, SDA | Data fall time | Standard mode | 300 | ns | ||
| Fast mode, CSDA = 10 pF | 21 | 300 | ns | ||||
| Fast mode, CSDA = 400 pF | 60 | 300 | ns | ||||
| 12 | tSP,SDA | SDA input noise pulse | 50 | ns | |||
| 13 | tfo,SDA | SDA output pulse time | Standard mode | 250 | ns | ||
| Fast mode, CSDA = 10 pF | 21 | 250 | ns | ||||
| Fast mode, CSDA = 400 pF | 60 | 250 | ns | ||||
| 14 | tSU,STO | Stop bit setup time | Standard mode | 4 | µs | ||
| Fast mode | 0.6 | µs | |||||
| 15 | tBU | Bus free between stop and start bit | Standard mode | 4.7 | µs | ||
| Fast mode | 1.3 | µs | |||||
| NO. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| 1 | fSW | Nominal operating frequency | 165 | kHz | |||
| 1 | fSWTOL | Operating frequency tolerance | –15% | 15% | |||
| 1 | fSYN CH | Synch frequency range nominal | 225 | 400 | kHz | ||
| 1 | DSYN CH | Synch input duty ratio | 40% | 60% | |||
| 2 | tr | Gate drive transition time, rising | VGTx = VGB × 6 V, CVGBx = 100 nF | 500(1) | ns | ||
| 3 | tf | Gate drive transition time, falling | VGTx = VGB × 6 V, CVGBx = 100 nF | 100(1) | ns | ||
| 4 | tDS | Synchronous switch on delay | 20 | 100(2) | ns | ||
| 5 | tdt | Top switch on delay | 20 | 100 | ns | ||
| tdc | Minimum on time | 3.5%(3) | 98.2%(4) | ||||
| NO. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| 1 | tdon | Turnon delay | 15 | µs | |||
| 2 | tdoff | Turnoff delay | 15 | µs | |||
| 3 | tdovsd | Delay timer overvoltage shutdown | 200 | µs | |||
| 4 | tdrovsd | Delay timer return from overvoltage shutdown | 200 | µs | |||
| NO. | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| 1 | tdon | Turnon delay(1) | 0 | 15 | µs | ||
| 2 | tdoff | Turnoff delay | RHSD = 180 Ω | 0 | 200 | µs | |
| 3 | tr | Rise time, 10% to 90% | 25 | 75 | µs | ||
| 4 | tdovsd | Delay timer overvoltage shutdown | 0 | 200 | µs | ||
| 5 | tdrovsd | Delay timer return from overvoltage shutdown | 0 | 200 | µs | ||
Figure 1. Input and Control Timing
Figure 2. Input and Control Timing for VBATW
Figure 3. Serial Communication AC Timing (I2C Interface)
Figure 4. Switching Regulators Timing
Figure 5. Linear Regulator Timing
Figure 6. HSD Timing
Figure 7. Feedback Reference vs Ambient Temperature
Figure 9. Efficiency vs Load Current
Figure 11. HSD RDS ON Resistance vs Ambient Temperature
Figure 13. Quiescent Current vs Ambient Temperature
Figure 15. VSTBY Dropout Voltage vs Ambient Temperature
Figure 8. Internal Fixed Switching Frequency vs Ambient Temperature
Figure 10. Efficiency vs Load Current
Figure 12. Overcurrent Voltage Threshold vs Ambient Temperature
Figure 14. VLR Dropout Voltage vs Ambient Temperature