SLVSDX5 February   2017 TPS54340B-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 RT/CLK Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Fixed-Frequency PWM Control
      2. 7.3.2  Slope Compensation Output Current
      3. 7.3.3  Pulse Skip Eco-mode™
      4. 7.3.4  Low Dropout Operation and Bootstrap Voltage (BOOT)
      5. 7.3.5  Error Amplifier
      6. 7.3.6  Adjusting the Output Voltage
      7. 7.3.7  Enable and Adjusting Undervoltage Lockout
      8. 7.3.8  Internal Soft-Start
      9. 7.3.9  Constant Switching Frequency and Timing Resistor (RT/CLK) Pin)
      10. 7.3.10 Accurate Current Limit Operation and Maximum Switchign Frequency
      11. 7.3.11 Synchronization to RT/CLK Pin
      12. 7.3.12 Overvoltage Protection
      13. 7.3.13 Thermal Shutdown
      14. 7.3.14 Small-Signal Model for Loop Response
      15. 7.3.15 Simple Small-Signal Model for Peak-Current-Mode Control
      16. 7.3.16 Small-Signal Model for Frequency Compensation
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Buck Converter With 6-V to 42-V Input and 3.3-V at 3.5-A Output
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Selecting the Switching Frequency
          2. 8.2.1.2.2  Output Inductor Selection (LO)
          3. 8.2.1.2.3  Output Capacitor
          4. 8.2.1.2.4  Catch Diode
          5. 8.2.1.2.5  Input Capacitor
          6. 8.2.1.2.6  Bootstrap-Capacitor Selection
          7. 8.2.1.2.7  Undervoltage Lockout Set Point
          8. 8.2.1.2.8  Output Voltage and Feedback Resistors Selection
          9. 8.2.1.2.9  Minimum VIN
          10. 8.2.1.2.10 Compensation
          11. 8.2.1.2.11 Power Dissipation Estimate
          12. 8.2.1.2.12 Discontinuous Conduction Mode and Eco-mode™ Boundary
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Inverting Power Supply
      3. 8.2.3 Split-Rail Power Supply
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Estimated Circuit Area
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout

Layout Guidelines

Layout is a critical portion of good power supply design. There are several signal paths that conduct fast changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise or degrade performance. See Figure 53 for a PCB layout example.

  • To reduce parasitic effects, the VIN pin should be bypassed to ground with a low ESR ceramic bypass capacitor with X5R or X7R dielectric.
  • Take care to minimize the loop area formed by the bypass capacitor connections, the VIN pin, and the anode of the catch diode. The SW pin should be routed to the cathode of the catch diode and to the output inductor. Because the SW connection is the switching node, the catch diode and output inductor should be located close to the SW pin, and the area of the PCB conductor minimized to prevent excessive capacitive coupling.
  • The GND pin should be tied directly to the power pad under the IC and the PowerPAD™. The PowerPAD should be connected to internal PCB ground planes using multiple vias directly under the IC.
  • For operation at full rated load, the top side ground area must provide adequate heat dissipating area.
  • The RT/CLK pin is sensitive to noise so the RT resistor should be located as close as possible to the IC and routed with minimal lengths of trace.
  • The additional external components can be placed approximately as shown.
  • It may be possible to obtain acceptable performance with alternate PCB layouts; however, this layout has been shown to produce good results, and is meant as a guideline.

Layout Example

TPS54340B-Q1 layout_lvsbb4.gif Figure 53. PCB Layout Example

Estimated Circuit Area

Boxing in the components in the design of Figure 33, the estimated PCB area is 1.025 in2 (661 mm2). This area does not include test points or connectors. If the area must be reduced, then this can be done by using a two sided assembly, and replacing the 0603 sized passives with a smaller-sized equivalent.