SLVSI72A April   2025  – October 2025 TPS55285

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Thermal Information
    4. 5.4 Electrical Characteristics
    5. 5.5 I2C Timing Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  VCC Power Supply
      2. 6.3.2  Default Output Enable(OE) bit Status
      3. 6.3.3  Input Undervoltage Lockout
      4. 6.3.4  Enable and Programmable UVLO
      5. 6.3.5  Soft Start
      6. 6.3.6  Shutdown and Load Discharge
      7. 6.3.7  Switching Frequency
      8. 6.3.8  Switching Frequency Dithering
      9. 6.3.9  Inductor Current Limit
      10. 6.3.10 Internal Charge Path
      11. 6.3.11 Output Voltage Setting
      12. 6.3.12 Output Current Limit
      13. 6.3.13 Output Cable Voltage Drop Compensation
      14. 6.3.14 Input Overvoltage Protection
      15. 6.3.15 Output Overvoltage Protection
      16. 6.3.16 Output Short Circuit Protection
      17. 6.3.17 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 PWM Mode
      2. 6.4.2 Power Save Mode
    5. 6.5 Programming
      1. 6.5.1 Data Validity
      2. 6.5.2 START and STOP Conditions
      3. 6.5.3 Byte Format
      4. 6.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      5. 6.5.5 Target Address and Data Direction Bit
      6. 6.5.6 Single Read and Write
      7. 6.5.7 Multi-Read and Multi-Write
  8. Register Maps
    1. 7.1 REF Register (Address = 0h, 1h) [reset = 10100100b, 00000001b]
    2. 7.2 IOUT_LIMIT Register (Address = 2h) [reset = 11100100b]
    3. 7.3 VOUT_SR Register (Address = 3h) [reset = 00000001b]
    4. 7.4 VOUT_FS Register (Address = 4h) [reset = 00000011b]
    5. 7.5 CDC Register (Address = 5h) [reset = 11110000b]
    6. 7.6 MODE Register (Address = 6h) [reset = 00100000b]
    7. 7.7 STATUS Register (Address = 7h) [reset = 00000001b]
    8. 7.8 Register Summary
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Switching Frequency
        2. 8.2.2.2 Output Voltage Setting
        3. 8.2.2.3 Inductor Selection
        4. 8.2.2.4 Input Capacitor
        5. 8.2.2.5 Output Capacitor
        6. 8.2.2.6 Output Current Limit
        7. 8.2.2.7 Loop Stability
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Capacitor

In boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is given by Equation 11, where the minimum input voltage and the maximum output voltage correspond to the maximum capacitor current.

Equation 11. TPS55285

where

  • ICOUT(RMS) is the RMS current through the output capacitor
  • IOUT is the output current

In this example, the maximum output ripple RMS current is 2.8A.

The ESR of the output capacitor causes an output voltage ripple given by Equation 12 in boost mode.

Equation 12. TPS55285

where

  • RCOUT is the ESR of the output capacitance

The capacitance also causes a capacitive output voltage ripple given by Equation 13 in boost mode. When input voltage reaches the minimum value and the output voltage reaches the maximum value, there is the largest output voltage ripple caused by the capacitance.

Equation 13. TPS55285

Typically, a combination of ceramic capacitors and bulk electrolytic capacitors is needed to provide low ESR, high ripple current, and small output voltage ripple. From the required output voltage ripple, use Equation 12 and Equation 13 to calculate the minimum required effective capacitance of the COUT.