SLVS314F SEPTEMBER   2000  – August 2015 TPS61010 , TPS61012 , TPS61013 , TPS61014 , TPS61015 , TPS61016

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
      1. 7.6.1 Table of Graphs
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Controller Circuit
      2. 9.3.2 Synchronous Rectifier
      3. 9.3.3 Power-Save Mode
      4. 9.3.4 Device Enable
      5. 9.3.5 Undervoltage Lockout (UVLO)
      6. 9.3.6 Autodischarge
      7. 9.3.7 Low-Battery Detector Circuit (LBI and LBO)
      8. 9.3.8 Antiringing Switch
      9. 9.3.9 Adjustable Output Voltage
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 1.8-mm Maximum Height Power Supply With Single Battery Cell Input Using Low Profile Components
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Programming the TPS61010 Adjustable Output Voltage Device
          2. 10.2.1.2.2 Programming the Low Battery Comparator Threshold Voltage
          3. 10.2.1.2.3 Inductor Selection
          4. 10.2.1.2.4 Capacitor Selection
          5. 10.2.1.2.5 Compensation of the Control Loop
        3. 10.2.1.3 Application Curves
      2. 10.2.2 250-mA Power Supply With Two Battery Cell Input
      3. 10.2.3 Dual Output Voltage Power Supply for DSPs
      4. 10.2.4 Power Supply With Auxiliary Positive Output Voltage
      5. 10.2.5 Power Supply With Auxiliary Negative Output Voltage
      6. 10.2.6 TPS6101x EVM Circuit Diagram
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DGS|10
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage VBAT, VOUT, EN, LBI, FB, ADEN –0.3 3.6 V
SW –0.3 7 V
Voltage LBO, COMP –0.3 3.6 V
Operating free-air temperature range, TA –40 85 °C
Maximum junction temperature, TJ 150 °C
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUEMAX UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VI Supply voltage at VBAT 0.8 VOUT V
IO Maximum output current at VIN = 1.2 V 100 mA
IO Maximum output current at VIN = 2.4 V 200 mA
L1 Inductor 10 33 µH
CI Input capacitor 10 µF
Co Output capacitor 10 22 47 µF
TJ Operating virtual junction temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS6101x TPS61010 UNIT
DGS DRC
10 PINS
RθJA Junction-to-ambient thermal resistance 161.8 43.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 36.3 67.4
RθJB Junction-to-board thermal resistance 82.7 18.1
ψJT Junction-to-top characterization parameter 1.3 1.6
ψJB Junction-to-board characterization parameter 81.1 18.2
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 5.2
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended operating free-air temperature range, VBAT = 1.2 V, EN = VBAT (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VI Minimum input voltage for start-up RL = 33 Ω 0.85 0.9 V
RL = 3 kΩ, TA = 25 °C 0.8
Input voltage once started IO = 100 mA 0.8
VO Programmable output
voltage range
TPS61010, IOUT = 100 mA 1.5 3.3 V
Output voltage TPS61011, 0.8 V < VI < VO, IO = 0 to 100 mA 1.45 1.5 1.55 V
TPS61012, 0.8 V < VI < VO, IO = 0 to 100 mA 1.74 1.8 1.86
TPS61013, 0.8 V < VI < VO, IO = 0 to 100 mA 2.42 2.5 2.58 V
TPS61013, 1.6 V < VI < VO, IO = 0 to 200 mA 2.42 2.5 2.58 V
TPS61014, 0.8 V < VI < VO, IO = 0 to 100 mA 2.72 2.8 2.88 V
TPS61014, 1.6 V < VI < VO, IO = 0 to 200 mA 2.72 2.8 2.88 V
TPS61015, 0.8 V < VI < VO, IO = 0 to 100 mA 2.9 3.0 3.1 V
TPS61015, 1.6 V < VI < VO, IO = 0 to 200 mA 2.9 3.0 3.1 V
TPS61016, 0.8 V < VI < VO, IO = 0 to 100 mA 3.2 3.3 3.4 V
TPS61016, 1.6 V < VI < VO, IO = 0 to 200 mA 3.2 3.3 3.4 V
IO Maximum continuous output current VI  > 0.8 V 100 mA
VI  > 1.8 V 250
I(SW) Switch current limit TPS61011, once started 0.39 0.48 A
TPS61012, once started 0.54 0.56
TPS61013, once started 0.85 0.93
TPS61014, once started 0.95 1.01
TPS61015, once started 1 1.06
TPS61016, once started 1.07 1.13
V(FB) Feedback voltage 480 500 520 mV
f Oscillator frequency 420 500 780 kHz
D Maximum duty cycle 85%
rDS(on) NMOS switch on-resistance VO = 1.5 V 0.37 0.51 Ω
PMOS switch on-resistance 0.45 0.54
rDS(on) NMOS switch on-resistance VO = 3.3 V 0.2 0.37 Ω
PMOS switch on-resistance 0.3 0.45
Line regulation (1) VI = 1.2 V to 1.4 V, IO = 100 mA 0.3 %/V
Load regulation (1) VI = 1.2 V; IO = 50 mA to 100 mA 0.1
Autodischarge switch
resistance
300 400 Ω
Residual output voltage after autodischarge ADEN = VBAT; EN = GND 0.4 V
VIL LBI voltage threshold (2) V(LBI) voltage decreasing 480 500 520 mV
LBI input hysteresis 10 mv
LBI input current 0.01 0.03
VOL LBO output low voltage V(LBI) = 0 V, VO = 3.3 V, I(OL) = 10 µA 0.04 0.2 V
LBO output leakage current V(LBI) = 650 mV, V(LBO) = VO 0.03 µA
I(FB) FB input bias current (TPS61010 only) V(FB) = 500 mV 0.01 0.03
VIL EN and ADEN input low voltage 0.8 V < VBAT < 3.3 V 0.2 × VBAT V
VIH EN and ADEN input high voltage 0.8 V < VBAT < 3.3 V 0.8 ×VBAT V
EN and ADEN input current EN and ADEN = GND or VBAT 0.01 0.03 µA
Iq Quiescent current into pins VBAT/SW and VOUT IL = 0 mA, VEN = VI VBAT/SW 31 46 µA
VO 5 8
Ioff Shutdown current from power source VEN = 0 V, ADEN = VBAT, TA= 25°C 1 3 µA
(1) Line and load regulation is measured as a percentage deviation from the nominal value (i.e., as percentage deviation from the nominal output voltage). For line regulation, x %/V stands for ±x% change of the nominal output voltage per 1-V change on the input/supply voltage. For load regulation, y% stands for ±y% change of the nominal output voltage per the specified current change.
(2) For proper operation the voltage at LBI may not exceed the voltage at VBAT.

7.6 Typical Characteristics

7.6.1 Table of Graphs

FIGURE
Maximum output current vs Input voltage for VO = 2.5 V, 3.3 V Figure 1
vs Input voltage for VO = 1.5 V, 1.8 V Figure 2
Efficiency vs Output current for VI = 1.2 VVO = 1.5 V, L1 = Sumida CDR74 - 10 µH Figure 3
vs Output current for VI = 1.2 VVO = 2.5 V, L1 = Sumida CDR74 - 10 µH Figure 4
vs Output current for VIN = 1.2 VVO = 3.3 V, L1 = Sumida CDR74 - 10 µH Figure 5
vs Output current for VI = 2.4 VVO = 3.3 V, L1 = Sumida CDR74 - 10 µH Figure 6
vs Input voltage for IO = 10 mA, IO = 100 mA, IO = 200 mAVO = 3.3 V, L1 = Sumida CDR74 - 10 µH Figure 7
TPS61016, VBAT = 1.2 V, IO = 100 mA Figure 8
Sumida CDRH6D38 - 10 µH
Sumida CDRH5D18 - 10 µH
Sumida CDRH74 - 10 µH
Sumida CDRH74B - 10 µH
Coilcraft DS 1608C - 10 µH
Coilcraft DO 1608C - 10 µH
Coilcraft DO 3308P - 10 µH
Coilcraft DS 3316 - 10 µH
Coiltronics UP1B - 10 µH
Coiltronics UP2B - 10 µH
Murata LQS66C - 10 µH
Murata LQN6C - 10 µH
TDK SLF 7045 - 10 µH
TDK SLF 7032 - 10 µH
Output voltage vs Output current TPS61011 Figure 9
vs Output current TPS61013 Figure 10
vs Output current TPS61016 Figure 11
Minimum supply start-up voltage vs Load resistance Figure 12
No-load supply current vs Input voltage Figure 13
Shutdown supply current vs Input voltage Figure 14
Switch current limit vs Output voltage Figure 15
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 max_v_VI25V_LVS314.gif
Figure 1. Maximum Output Current vs Input Voltage
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 eff_v_IO15V_LVS314.gifFigure 3. Efficiency vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 eff_v_IO12V_LVS314.gifFigure 5. Efficiency vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 eff_v_VI_LVS314.gifFigure 7. Efficiency vs Input Voltage
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 VO_v_IO11_LVS314.gifFigure 9. Output Voltage vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 VO_v_IO16_LVS314.gifFigure 11. Output Voltage vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 NLICC_v_VIL_LVS314.gifFigure 13. No-Load Supply Current vs Input Voltage
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 switch_v_VO_LVS314.gifFigure 15. Switch Current Limit vs Output Voltage
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 max_v_VI18V_LVS314.gif
Figure 2. Maximum Output Current vs Input Voltage
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 eff_v_IO25V_LVS314.gifFigure 4. Efficiency vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 eff_IO24V_LVS314.gifFigure 6. Efficiency vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 eff_v_induct_LVS314.gifFigure 8. Efficiency vs Inductor Type
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 VO_v_IO13_LVS314.gifFigure 10. Output Voltage vs Output Current
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 start_v_load_LVS314.gifFigure 12. Minimum Start-Up Supply Voltage vs Load Resistance
TPS61010 TPS61011 TPS61012 TPS61013 TPS61014 TPS61015 TPS61016 SDICC_v_VI_LVS314.gifFigure 14. Shutdown Supply Current vs Input Voltage