SLVSC52B July   2013  – September 2015 TPS62152-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Pulse-Width Modulation (PWM) Operation
      2. 7.3.2  100% Duty-Cycle Operation
      3. 7.3.3  Enable / Shutdown (EN)
      4. 7.3.4  Soft Start or Tracking (SS/TR)
      5. 7.3.5  Current-Limit and Short-Circuit Protection
      6. 7.3.6  Power Good (PG)
      7. 7.3.7  Pin-Selectable Output Voltage (DEF)
      8. 7.3.8  Frequency Selection (FSW)
      9. 7.3.9  Undervoltage Lockout (UVLO)
      10. 7.3.10 Thermal Shutdown
      11. 7.3.11 Tracking Function
      12. 7.3.12 Feedback Pin (FB)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Save Mode Operation
      2. 7.4.2 Active Output Discharge
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Component Selection
          1. 8.2.2.1.1 Inductor Selection
          2. 8.2.2.1.2 Output Capacitor
            1. 8.2.2.1.2.1 Input Capacitor
            2. 8.2.2.1.2.2 Soft-Start Capacitor
        2. 8.2.2.2 Output Filter and Loop Stability
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resource
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGT|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Pin voltage range(2) AVIN, PVIN –0.3 20 V
EN, SS/TR –0.3 VIN + 0.3
SW –0.3 VIN + 0.3
DEF, FSW, FB, PG, VOS –0.3 7
Power-good sink current PG 10 mA
Operating junction temperature, TJ –40 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to network ground terminal.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) ±2000 V
Charged device model (CDM), per AEC Q100-011 All pins ±500
Corner pins (1, 4, 5, 8, 9, 12, 13, 16) ±750
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN Supply voltage at AVIN and PVIN(1) 4 17 V
CIN Input filter capacitor 10 µF
COUT Output buffer capacitor 10 µF
LOUT Output inductor 1 3.3 µH
TA Operating free air temperature –40 125 °C
(1) The device is still functional down to the undervoltage lockout (see the VUVLO parameter in the Electrical Characteristics table).

6.4 Thermal Information

THERMAL METRIC(1) TPS62152-Q1 UNIT
RGT (VQFN)
16 Pins
RθJA Junction-to-ambient thermal resistance 45 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 51.6 °C/W
RθJB Junction-to-board thermal resistance 17.4 °C/W
ψJT Junction-to-top characterization parameter 0.9 °C/W
ψJB Junction-to-board characterization parameter 17.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over free-air temperature range (TA= –40°C to 125°C), typical values at VIN = AVIN = PVIN = 12 V and TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY
VIN Input voltage range(1) 4 17 V
IQ Operating quiescent current EN = High, IOUT = 0 mA, device not switching 17 25 µA
ISD Shutdown current(2) EN = Low 1.5 4 µA
VUVLO Undervoltage lockout threshold Falling input voltage 2.6 2.7 2.8 V
Hysteresis 200 mV
TSD Thermal shutdown temperature 160 °C
Thermal shutdown hysteresis 20 °C
CONTROL (EN, DEF, FSW, SS/TR, PG)
VH High-level input threshold voltage (EN, DEF, FSW) 0.9 V
VL Low-level input threshold voltage (EN, DEF, FSW) 0.3 V
ILKG Input leakage current (EN, DEF, FSW) EN = VIN or GND; DEF, FSW = VOUT or GND 0.01 1 µA
VTH_PG Power-good threshold voltage Rising (%VOUT) 92% 95% 98%
Falling (%VOUT) 87% 90% 94%
VOL_PG Power-good output low IPG = –2 mA 0.07 0.3 V
ILKG_PG Input leakage current (PG) VPG = 1.8 V 1 400 nA
ISS/TR SS/TR pin source current 2.3 2.5 2.7 µA
POWER SWITCH
RDS(ON) High-side MOSFET on-resistance VIN ≥ 6 V 90 170
VIN = 3 V 120
Low-side MOSFET on-resistance VIN ≥ 6 V 40 70
VIN = 3 V 50
ILIMF High-side MOSFET forward current limit(3) VIN = 12 V, TA= 25°C 1.4 1.7 2.2 A
OUTPUT
VREF Internal reference voltage(4) 0.8 V
ILKG_FB Input leakage current (FB) VFB = 0.8 V 1 100 nA
VOUT Output voltage range VIN ≥ VOUT 3.3 V
DEF (Output voltage programming) DEF = 0 (GND) VOUT V
DEF = 1 (VOUT) VOUT + 5%
Initial output voltage accuracy(5) PWM mode operation, VIN ≥ VOUT + 1 V –1.8% 1.8%
Power-save mode operation, COUT = 22 µF –2.3% 2.8%
Load regulation(6) VIN = 12 V, VOUT = 3.3 V, PWM mode operation 0.05 %/A
Line regulation(6) 3 V ≤ VIN ≤ 17 V, VOUT = 3.3 V, IOUT = 1 A, PWM mode operation 0.02 %/V
(1) The device is still functional down to undervoltage lockout (see parameter VUVLO).
(2) Current into AVIN + PVIN pin
(3) This is the static current limit. It can be temporarily higher in applications because of internal propagation delay (see Current-Limit and Short-Circuit Protection section).
(4) This is the voltage regulated at the FB pin.
(5) This is the accuracy provided by the device itself (line and load regulation effects are not included). The (internal) resistive divider is included.
(6) Line and load regulation depend on external component selection and layout (see Figure 5 and Figure 6).

6.6 Typical Characteristics

Table 1. Table of Graphs

DESCRIPTION FIGURE
Efficiency vs Output Current Figure 1, Figure 3
vs Input Voltage Figure 2, Figure 4
Output Voltage Accuracy Load Regulation Figure 5
Line Regulation Figure 6
Switching Frequency vs Input Voltage Figure 7
vs Output Current Figure 8
Input Quiescent Current vs Input voltage Figure 9
Input Shutdown Current vs Input voltage Figure 10
High-Side Static Drain-Source-Resistance (RDSon) vs Input voltage Figure 11
Low-Side Static Drain-Source-Resistance (RDSon) vs Input voltage Figure 12
Output Voltage Ripple vs Output Current Figure 13
Output Current vs Input Voltage Figure 14
Power-Supply Rejection Ratio vs Frequency Figure 15, Figure 16
PWM-PSM-Transition Figure 17
Load Transient Response Figure 18
Load Transient Response Rising Edge Figure 19
Falling Edge Figure 20
Startup Into 100 mA Figure 21
Into 1 A Figure 22
Typical Operation in PWM Mode Figure 23
Typical Operation in Power Save Mode Figure 24
TPS62152-Q1 SLVSAL5_eff33iouthalf.gif
FSW = 1.25 MHz L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 1. Efficiency vs Output Current for Different Input Voltages
TPS62152-Q1 SLVSAL5_eff33vinhalf.gif
FSW = 1.25 MHz L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 2. Efficiency vs Input Voltage for Different Output Currents
TPS62152-Q1 SLVSAL5_eff33ioutfull.gif
FSW = 2.5 MHz L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 3. Efficiency vs Output Current for Different Input Voltages
TPS62152-Q1 SLVSAL5_loadreg.gif
L = 2.2 µH (XFL4020) COUT = 22 µF CIN = 10 µF
Figure 5. Output Voltage Accuracy (Load Regulation)
TPS62152-Q1 SLVSAL5_fswvin.gif
L = 2.2 µH (XFL4020) COUT = 22 µF CIN = 10 µF
Figure 7. Switching Frequency vs Input Voltage
TPS62152-Q1 SLVSAL5_IQ.gif
Figure 9. Input Quiescent Current vs Input Voltage
TPS62152-Q1 SLVSAL5_RDSonHS.gif
Figure 11. High-Side Static Drain-Source-Resistance (RDSon)
vs Input Voltage
TPS62152-Q1 SLVSAL5_voutripple.gif
L = 2.2 µH (XFL4020) COUT = 22 µF CIN = 10 µF
Figure 13. Output Voltage Ripple vs Output Current
TPS62152-Q1 SLVSAL5_psrrhigh.gif
FSW = 2.5 MHz L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 15. Power-Supply Rejection Ratio vs Frequency
TPS62152-Q1 SLVSAL5_mode01.gif
VIN = 12 V With 50 mV/div
Figure 17. PWM-PSM-Transition
TPS62152-Q1 SLVSAL5_loadtranrise.gif
Figure 19. Load Transient Response of Figure 18,
Rising Edge
TPS62152-Q1 SLVSAL5_stuplow.gif
VIN = 12 V
Figure 21. Startup into 100 mA
TPS62152-Q1 SLVSAL5_PWMtyp.gif
IOUT = 1 A
Figure 23. Typical Operation in PWM Mode
TPS62152-Q1 SLVSAL5_eff33vinfull.gif
FSW = 2.5 MHz L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 4. Efficiency vs Input Voltage for Different Output Currents
TPS62152-Q1 SLVSAL5_linereg.gif
L = 2.2 µH (XFL4020) COUT = 22 µF CIN = 10 µF
Figure 6. Output Voltage Accuracy (Line Regulation)
TPS62152-Q1 SLVSAL5_fswiout.gif
FSW = Low L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 8. Switching Frequency vs Output Current
TPS62152-Q1 SLVSAL5_ISD.gif
Figure 10. Input Shutdown Current vs Input Voltage
TPS62152-Q1 SLVSAL5_RDSonLS.gif
Figure 12. Low-Side Static Drain-Source-Resistance (RDSon)
vs Input Voltage
TPS62152-Q1 SLVSAL5_ioutmax.gif
L = 2.2 µH (XFL4020) COUT = 22 µF CIN = 10 µF
Figure 14. Output Current vs Input Voltage
TPS62152-Q1 SLVSAL5_psrrlow.gif
FSW = 2.5 MHz L = 2.2 µH (XFL4020) COUT = 22 µF
CIN = 10 µF
Figure 16. Power-Supply Rejection Ratio vs Frequency
TPS62152-Q1 SLVSAL5_loadtranfull.gif
VIN = 12 V IOUT = 0 to 5 A and back to 0 A
Figure 18. Load Transient Response
TPS62152-Q1 SLVSAL5_loadtranfall.gif
Figure 20. Load Transient Response of Figure 18,
Falling Edge
TPS62152-Q1 SLVSAL5_stuphigh.gif
VIN = 12 V
Figure 22. Startup into 1 A
TPS62152-Q1 SLVSAL5_PSMtyp.gif
IOUT = 10 mA
Figure 24. Typical Operation in Power Save Mode