SLVSFU1B April   2023  – October 2023 TPS62874-Q1 , TPS62875-Q1 , TPS62876-Q1 , TPS62877-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6.   Device Options
  7. Pin Configuration and Functions
  8. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings - Q100
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Characteristics
    7. 6.7 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed-Frequency DCS-Control Topology
      2. 8.3.2  Forced-PWM and Power-Save Modes
      3. 8.3.3  Transient Non-Synchronous Mode (optional)
      4. 8.3.4  Precise Enable
      5. 8.3.5  Start-Up
      6. 8.3.6  Switching Frequency Selection
      7. 8.3.7  Output Voltage Setting
        1. 8.3.7.1 Output Voltage Range
        2. 8.3.7.2 Output Voltage Setpoint
        3. 8.3.7.3 Non-Default Output Voltage Setpoint
        4. 8.3.7.4 Dynamic Voltage Scaling
        5. 8.3.7.5 Droop Compensation
      8. 8.3.8  Compensation (COMP)
      9. 8.3.9  Mode Selection / Clock Synchronization (MODE/SYNC)
      10. 8.3.10 Spread Spectrum Clocking (SSC)
      11. 8.3.11 Output Discharge
      12. 8.3.12 Undervoltage Lockout (UVLO)
      13. 8.3.13 Overvoltage Lockout (OVLO)
      14. 8.3.14 Overcurrent Protection
        1. 8.3.14.1 Cycle-by-Cycle Current Limiting
        2. 8.3.14.2 Hiccup Mode
        3. 8.3.14.3 Current-Limit Mode
      15. 8.3.15 Power Good (PG)
        1. 8.3.15.1 Standalone / Primary Device Behavior
        2. 8.3.15.2 Secondary Device Behavior
      16. 8.3.16 Remote Sense
      17. 8.3.17 Thermal Warning and Shutdown
      18. 8.3.18 Stacked Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
      2. 8.4.2 Undervoltage Lockout
      3. 8.4.3 Standby
      4. 8.4.4 On
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard-, Fast-, Fast-Mode Plus Protocol
      3. 8.5.3 HS-Mode Protocol
      4. 8.5.4 I2C Update Sequence
      5. 8.5.5 I2C Register Reset
      6. 8.5.6 Dynamic Voltage Scaling (DVS)
    6. 8.6 Device Registers
  11. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Selecting the Input Capacitors
        3. 9.2.2.3 Selecting the Compensation Resistor
        4. 9.2.2.4 Selecting the Output Capacitors
        5. 9.2.2.5 Selecting the Compensation Capacitor CC
        6. 9.2.2.6 Selecting the Compensation Capacitor CC2
      3. 9.2.3 Application Curves
    3. 9.3 Application Using Two TPS62876-Q1 in a Stacked Configuration
      1. 9.3.1 Design Requirements For Two Stacked Devices
      2. 9.3.2 Detailed Design Procedure
        1. 9.3.2.1 Selecting the Compensation Resistor
        2. 9.3.2.2 Selecting the Output Capacitors
        3. 9.3.2.3 Selecting the Compensation Capacitor CC
      3. 9.3.3 Application Curves for Two Stacked Devices
    4. 9.4 Application Using Three TPS62876-Q1 in a Stacked Configuration
      1. 9.4.1 Design Requirements For Three Stacked Devices
      2. 9.4.2 Detailed Design Procedure
        1. 9.4.2.1 Selecting the Compensation Resistor
        2. 9.4.2.2 Selecting the Output Capacitors
        3. 9.4.2.3 Selecting the Compensation Capacitor CC
      3. 9.4.3 Application Curves for Three Stacked Devices
    5. 9.5 Best Design Practices
    6. 9.6 Power Supply Recommendations
    7. 9.7 Layout
      1. 9.7.1 Layout Guidelines
      2. 9.7.2 Layout Example
  12. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  13. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Voltage Setpoint

Together with the selected range, the VSET[7:0] bits in the VSET register control the output voltage setpoint of the device (see Table 8-4).

Table 8-4 Start-Up Voltage Settings
VRANGE[1:0]Output Voltage Setpoint
0b000.4 V + VSET[7:0] × 1.25 mV
0b010.4 V + VSET[7:0] × 2.5 mV
0b10 (default)0.4 V + VSET[7:0] × 5 mV
0b110.4 V + VSET[7:0] × 5 mV

During initialization, the device reads the state of the VSEL pin and selects the default output voltage according to Table 8-5. Note that the VSEL pin also selects the I2C target address of the device (see below).

Table 8-5 Default Output Voltage Setpoints
VSEL Pin(1)VSET[7:0]

I2C Device Address

Output Voltage Setpoint
6.2 kΩ to GND0x50

0x44

800 mV
Short-Circuit to GND0x46

0x45

750 mV
Short-Circuit to VIN0x5F

0x46

875 mV
47 kΩ to VIN0x24

0x47

580 mV

If you program new output voltage setpoint (VOUT[7:0]), output voltage range (VRANGE[1:0]), or soft-start time (SSTIME[1:0]) settings when the device has already begun its soft-start sequence, the device ignores the new values until the soft-start sequence is complete. For example, if you change the value of VSET[7:0] during soft-start, the device first ramps to the value that VSET[7:0] had when the soft-start sequence began and then, when soft-start is complete, ramps up or down to the new value.

If you change VOUT[7:0], VRAMP[1:0], or SSTIME[1:0] while EN is low, the device uses the new values the next time you enable it.

During start-up the output voltage ramps up to the target value set by the VSEL pin before ramping up or down to any new value programmed to the device over the I2C interface.

For reliable voltage setting, make sure that there is no stray current path connected to the VSEL pin and that the parasitic capacitance between the VSEL pin and GND is less than 30 pF.