SLVSAW1A June   2011  – January 2017 TPS65053-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Function
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Mode Selection
      2. 7.3.2 Enable
      3. 7.3.3 Reset
      4. 7.3.4 Short-Circuit Protection
      5. 7.3.5 Thermal Shutdown
        1. 7.3.5.1 Low Dropout Voltage Regulators
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Save Mode
        1. 7.4.1.1 Dynamic Voltage Positioning
        2. 7.4.1.2 Soft Start
        3. 7.4.1.3 100% Duty-Cycle Low Dropout Operation
        4. 7.4.1.4 Undervoltage Lockout
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Voltage Setting
        2. 8.2.2.2 Output Filter Design (Inductor and Output Capacitor)
          1. 8.2.2.2.1 Inductor Selection
          2. 8.2.2.2.2 Output Capacitor Selection
          3. 8.2.2.2.3 Input Capacitor Selection
        3. 8.2.2.3 Low Dropout Voltage Regulators (LDOs)
          1. 8.2.2.3.1 Input Capacitor and Output Capacitor Selection for the LDOs
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout

Layout Guidelines

The following check list provides layout guidelines that have been followed in the Layout Example shown in Figure 23.

  • The input capacitors for the DC-DC converters should be placed as close as possible to the VINDCDC1/2 pin and the PGND1 and PGND2 pins.
  • The inductor of the output filter should be placed as close as possible to the device to provide the shortest switch node possible, reducing the noise emitted into the system and increasing the efficiency.
  • Sense the feedback voltage from the output at the output capacitors to ensure the best DC accuracy. Feedback should be routed away from noisy sources such as the inductor. If possible route on the opposing side as the switch node and inductor and place a GND plane between the feedback and the noisy sources or keep-out underneath them entirely.
  • Place the output capacitors as close as possible to the inductor to reduce the feedback loop as much as possible. This will ensure best regulation at the feedback point.
  • Place the device as close as possible to the most demanding or sensitive load. The output capacitors should be placed close to the input of the load. This will ensure the best AC performance possible.
  • The input and output capacitors for the LDOs should be placed close to the device for best regulation performance.
  • The use a one common ground plane is recommended for the device layout. The AGND can be separated from the PGND, but a large low parasitic PGND is required to connect the PGND1/2 pins to the CIN and external PGND connections.

Layout Example

Figure 23. Layout Example for TPS65053-Q1