SWCS037I May   2008  – January 2015 TPS65920 , TPS65930

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configuration and Functions
    1. 3.1 Pin Diagram
    2. 3.2 Pin Attributes
    3. 3.3 Signal Descriptions
  4. 4Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 ESD Ratings
    3. 4.3 Recommended Operating Conditions
    4. 4.4 Thermal Characteristics for ZCH Package
    5. 4.5 Minimum Voltages and Associated Currents
    6. 4.6 Digital I/O Electrical Characteristics
    7. 4.7 Timing Requirements and Switching Characteristics
      1. 4.7.1 Timing Parameters
      2. 4.7.2 Target Frequencies
      3. 4.7.3 I2C Timing
      4. 4.7.4 Audio Interface: TDM/I2S Protocol
        1. 4.7.4.1 I2S Right- and Left-Justified Data Format
        2. 4.7.4.2 TDM Data Format
      5. 4.7.5 JTAG Interfaces
  5. 5Detailed Description
    1. 5.1 Power Module
      1. 5.1.1 Power Providers
        1. 5.1.1.1  VDD1 DC-DC Regulator
          1. 5.1.1.1.1 VDD1 DC-DC Regulator Characteristics
          2. 5.1.1.1.2 External Components and Application Schematics
        2. 5.1.1.2  VDD2 DC-DC Regulator
          1. 5.1.1.2.1 VDD2 DC-DC Regulator Characteristics
          2. 5.1.1.2.2 External Components and Application Schematics
        3. 5.1.1.3  VIO DC-DC Regulator
          1. 5.1.1.3.1 VIO DC-DC Regulator Characteristics
          2. 5.1.1.3.2 External Components and Application Schematics
        4. 5.1.1.4  VDAC LDO Regulator
        5. 5.1.1.5  VPLL1 LDO Regulator
        6. 5.1.1.6  VMMC1 LDO Regulator
        7. 5.1.1.7  VAUX2 LDO Regulator
        8. 5.1.1.8  Output Load Conditions
        9. 5.1.1.9  Charge Pump
        10. 5.1.1.10 USB LDO Short-Circuit Protection Scheme
      2. 5.1.2 Power References
      3. 5.1.3 Power Control
        1. 5.1.3.1 Backup Battery Charger
        2. 5.1.3.2 Battery Monitoring and Threshold Detection
          1. 5.1.3.2.1 Power On/Power Off and Backup Conditions
        3. 5.1.3.3 VRRTC LDO Regulator
      4. 5.1.4 Power Consumption
      5. 5.1.5 Power Management
        1. 5.1.5.1 Boot Modes
        2. 5.1.5.2 Process Modes
          1. 5.1.5.2.1 MC021 Mode
        3. 5.1.5.3 Power-On Sequence
          1. 5.1.5.3.1 Timing Before Sequence_Start
          2. 5.1.5.3.2 Power-On Sequence
          3. 5.1.5.3.3 Power On in Slave_C021 Mode
        4. 5.1.5.4 Power-Off Sequence
          1. 5.1.5.4.1 Power-Off Sequence
    2. 5.2 Real-Time Clock and Embedded Power Controller
      1. 5.2.1 RTC
        1. 5.2.1.1 Backup Battery
      2. 5.2.2 EPC
    3. 5.3 USB Transceiver
      1. 5.3.1 Features
      2. 5.3.2 HS USB Port Timing
      3. 5.3.3 USB-CEA Carkit Port Timing
      4. 5.3.4 PHY Electrical Characteristics
        1. 5.3.4.1 HS Differential Receiver
        2. 5.3.4.2 HS Differential Transmitter
        3. 5.3.4.3 CEA/UART Driver
        4. 5.3.4.4 Pullup/Pulldown Resistors
      5. 5.3.5 OTG Electrical Characteristics
        1. 5.3.5.1 OTG VBUS Electrical Characteristics
        2. 5.3.5.2 OTG ID Electrical Characteristics
    4. 5.4 MADC
      1. 5.4.1 General Description
      2. 5.4.2 MADC Electrical Characteristics
      3. 5.4.3 Channel Voltage Input Range
        1. 5.4.3.1 Sequence Conversion Time (Real-Time or Nonaborted Asynchronous)
    5. 5.5 LED Drivers
      1. 5.5.1 General Description
    6. 5.6 Keyboard
      1. 5.6.1 Keyboard Connection
    7. 5.7 Clock Specifications
      1. 5.7.1 Clock Features
      2. 5.7.2 Input Clock Specifications
        1. 5.7.2.1 Clock Source Requirements
        2. 5.7.2.2 HFCLKIN
        3. 5.7.2.3 32-kHz Input Clock
          1. 5.7.2.3.1 External Crystal Description
          2. 5.7.2.3.2 External Clock Description
      3. 5.7.3 Output Clock Specifications
        1. 5.7.3.1 32KCLKOUT Output Clock
        2. 5.7.3.2 HFCLKOUT Output Clock
        3. 5.7.3.3 Output Clock Stabilization Time
    8. 5.8 Debouncing Time
    9. 5.9 External Components
  6. 6Audio/Voice Module (TPS65930 Device Only)
    1. 6.1 Audio/Voice Downlink (RX) Module
      1. 6.1.1 Predriver for External Class-D Amplifier
        1. 6.1.1.1 Predriver Output Characteristics
        2. 6.1.1.2 External Components and Application Schematics
      2. 6.1.2 Vibrator H-Bridge
        1. 6.1.2.1 Vibrator H-Bridge Output Characteristics
        2. 6.1.2.2 External Components and Application Schematics
      3. 6.1.3 Carkit Output
      4. 6.1.4 Digital Audio Filter Module
      5. 6.1.5 Boost Stage
    2. 6.2 Audio Uplink (TX) Module
      1. 6.2.1 Microphone Bias Module
        1. 6.2.1.1 Analog Microphone Bias Module Characteristics
        2. 6.2.1.2 Silicon Microphone Module Characteristics
      2. 6.2.2 FM Radio/Auxiliary Input
        1. 6.2.2.1 External Components
      3. 6.2.3 Uplink Characteristics
      4. 6.2.4 Microphone Amplification Stage
      5. 6.2.5 Carkit Input
      6. 6.2.6 Digital Audio Filter Module
  7. 7Device and Documentation Support
    1. 7.1 Device Support
      1. 7.1.1 Development Support
      2. 7.1.2 Device Nomenclature
    2. 7.2 Community Resources
    3. 7.3 Related Links
    4. 7.4 Trademarks
    5. 7.5 Electrostatic Discharge Caution
    6. 7.6 Export Control Notice
    7. 7.7 Glossary
    8. 7.8 Additional Acronyms
  8. 8Mechanical, Packaging, and Orderable Information
    1. 8.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

4 Specifications

4.1 Absolute Maximum Ratings

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Main battery supply voltage(1) 2.1 4.5 V
Voltage on any input Supply represents the voltage applied to the power supply pin associated with the input 0.0 1.0*Supply V
Ambient temperature –40 85 °C
Junction temperature (TJ) At 1.4 W (Theta JB 11°C/W 2S2P board) 105 °C
Junction temperature (TJ) for parametric compliance –40 105 °C
Storage temperature (Tstg) –55 125 °C
(1) The product has negligible reliability impact if voltage spikes of 5.2 V occur for a total duration of 10 ms.

4.2 ESD Ratings

VALUE UNIT
VESD Electrostatic discharge (ESD) performance: Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1) All other pins ±2 kV
CLK32KOUT pin ±1.5
Charged device model (CDM), per JESD22-C101(2) ±500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

MIN TYP MAX UNIT
Main battery supply voltage 2.7(1) 3.6 4.5 V
Backup battery supply voltage 1.8 3.2 3.3 V
Ambient temperature range –40 85 °C
(1) 2.7 V is the minimum threshold for the battery at which the device will turn OFF. However, the minimum voltage at which the device will power ON is 3.2 V ±100 mV (if PWRON does not have a switch and is connected to VBAT) considering battery plug as the device switch on event. If PWRON has a switch then 3.2 V is the minimum for the device to turn ON.

4.4 Thermal Characteristics for ZCH Package

NAME DESCRIPTION TPS65920–2S2P TPS65920–1S0P TPS65930–2S2P TPS65930–1S0P AIR FLOW (m/s)(2)
(°C/W)(1) (°C/W) (°C/W)(1) (°C/W)
JC Junction-to-case (top) 6.74 6.74 33.42 57.05 0.00
JB Junction-to-board 13.80 14.50 13.81 14.51 0.00
JA Junction-to-free air 33.40 57.04 6.74 6.74 0.00
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
  • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
  • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
(2) m/s = meters per second

4.5 Minimum Voltages and Associated Currents

Table 4-1 lists the VBAT minimum and maximum currents per VBAT ball.

Table 4-1 VBAT Minimum Required Per VBAT Ball and Associated Maximum Current

CATEGORY PIN AND MODULE MAXIMUM CURRENT SPECIFIED (mA) OUTPUT VOLTAGE (V) VBAT MINIMUM (V)
VBAT pin name VDD_VPLLA3R_IN_6POV 340
Internal module supplied VPLL1 (LDO) 40 1.0 / 1.2 / 1.3 / 1.8 / 2.8 / 3.0 Maximum
(2.7, output voltage selected + 250 mV)
VDD1 core (DCDC) < 1 2.7
VDD2 core (DCDC) < 1 2.7
SYSPOR (power ref) < 1 2.7
PBIAS (power ref) < 1 2.7
VBAT pin name VDD_VDAC_IN_6POV 370
Internal module supplied VDAC (LDO) 70 1.2 / 1.3 / 1.8 Maximum
(2.7, output voltage selected + 250 mV)
VINTANA1 (LDO) 50 1.5 Maximum
(2.7, output voltage selected + 250 mV)
VINTANA2 (LDO) 250 2.5 / 2.75 Maximum
(2.7, output voltage selected +250 mV)
VIO core (DCDC) < 1 2.7
VBAT pin name VDD_VAUXI2S_IN_6POV 350
Internal module supplied VAUX2 (LDO) 100 1.3 / 1.5 / 1.6 / 1.7 / 1.8 / 1.9 / 2.0 / 2.1 / 2.2 / 2.3 / 2.4 / 2.5 / 2.8 Maximum
(2.7, output voltage selected + 250 mV)
VBAT pin name VDD_VMMC1_IN_6POV 220
Internal module supplied VMMC1 (LDO) 220 1.85 / 2.85 / 3.0 / 3.15 Maximum
(2.7, output voltage selected + 250 mV)
Power_REGBATT 0.001 2.7
VBAT pin name VDD_VINT_IN_6POV 131
Internal module supplied VINTDIG (LDO) 80 1.0 / 1.2 / 1.3 / 1.5 Maximum
(2.7, output voltage selected + 250 mV)
VRRTC (LDO) 30 1.5 Maximum
(2.7, output voltage selected + 250 mV)
VBACKUP (LDO) 1 2.5 / 3.0 / 3.1 / 3.2 Maximum
(2.7, output voltage selected + 250 mV)

4.6 Digital I/O Electrical Characteristics

Table 4-2 describes the digital I/O electrical characteristics. The following list defines abbreviations used in the table:

  • RL: Reference level voltage applied to the I/O cell
  • VOL: Low-level output voltage
  • VOH: High-level output voltage
  • VIL: Low-level input voltage
  • VIH: High-level input voltage
  • Min: Minimum value
  • Max: Maximum value

Table 4-2 Digital I/O Electrical Characteristics

PIN NAME VOL (V) VOH (V) VIL (V) VIL (V) MAX FREQ (MHz) LOAD (pF) OUTPUT MODE RISE TIME (ns) FALL TIME (ns)
MIN MAX MIN MAX MIN MAX MIN MAX
GPIO0/CD1 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 33 30 5.2 5.2
JTAG.TDO
GPIO0 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 33 30 5.2 5.2
JTAG.TMS
GPIO2 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
TEST1
GPIO15 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
TEST2
GPIO6 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
PWM0
TEST3
GPIO7 0 0.45 RL–0.45 RL 0 0.35xRL 0.65xRL RL 3 30 5.2 5.2
VIBRA.SYNC
PWM1
TEST4
SYSEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 5.2 5.2
CLKEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
CLKREQ 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
INT1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
NRESPWRON 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
NRESWARM 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
PWRON 0 0.35×1.8V 0.65×1.8V VBAT 3 33.3 33.3
NSLEEP1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
CLK256FS 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 12.288 30 16.3 16.3
VMODE1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
BOOT0 0 RL 3 33.3 33.3
BOOT1 0 RL 3 33.3 33.3
REGEN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 33.3 33.3
MSECURE 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.3 33.3
I2C.SR.SDA 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 Up to 400
VMODE2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.4 29.4 29.4
I2C.SR.SCL 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 10.0 10.0
I2C.CNTL.SDA 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 Up to 400
I2C.CNTL.SCL 0 0.4 –0.5 0.3×RL 0.7×RL RL+0.5 3.4 10.0 10.0
I2S.CLK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6.5 30 33.0 33.0
I2S.SYNC 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 6.5 30 33.0 33.0
I2S.DIN 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.25 30 33.0 33.0
I2S.DOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3.25 30 29.0 29.0
32KCLKOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.032 30 16 16
HFCLKOUT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 38.4 30 2.6 2.6
UCLK 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 60 10 1.0 1.0
STP 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO9
DIR 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO10
NXT 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO11
DATA0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.TXD
DATA1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.RXD
DATA2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.RTSI
DATA3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
UART4.CTSO
GPIO12 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
DATA4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO14
DATA5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO3
DATA6 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO4
DATA7 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 30 10 1.0 1.0
GPIO5
TEST.RESET 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
TEST 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 30 29.0 29.0
JTAG.TDI/ BERDATA 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
JTAG.TCK/ BERDATA 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 3 33.0 33.0
GPIO13 0 0.45 RL–0.45 RL 0 0.35×RL 0.35×RL 3 30 33.3 33.3
LEDSYNC
KPD.C0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C6 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.C7 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 30 29.0 29.0
KPD.R0 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R1 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R2 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R3 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R4 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R5 0 0.45 RL–0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R6 0 0.45 0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8
KPD.R7 0 0.45 0.45 RL 0 0.35×RL 0.65×RL RL 0.033 3051.8 3051.8

4.7 Timing Requirements and Switching Characteristics

4.7.1 Timing Parameters

The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies are abbreviated, as shown in Table 4-3.

Table 4-3 Timing Parameters

SUBSCRIPTS
SYMBOL PARAMETER
c Cycle time (period)
d Delay time
dis Disable time
en Enable time
h Hold time
su Setup time
START Start bit
t Transition time
v Valid time
w Pulse duration (width)
X Unknown, changing, or don't care level
H High
L Low
V Valid
IV Invalid
AE Active edge
FE First edge
LE Last edge
Z High impedance

4.7.2 Target Frequencies

Table 4-4 assumes testing over the recommended operating conditions.

Table 4-4 TPS65920/TPS65930 Interface Target Frequencies

I/O INTERFACE INTERFACE DESIGNATION TARGET FREQUENCY
1.5 V
SmartReflex inter-integrated circuit (I2C) I2C Slave HS mode 3.6 Mbps
General-purpose I2C Slave fast-speed mode 400 Kbps
Slave standard mode 100 Kbps
USB USB HS 480 Mbps
FS 12 Mbps
LS 1.5 Mbps
JTAG RealView ICE tool 30 MHz
XDS560 and XDS510 tools 30 MHz
Lauterbach tool 30 MHz
TDM/inter-IC sound (I2S) I2S 1/(64 * Fs)(1)
Right-justified 1/(64 * Fs)(1)
Left-justified 1/(64 * Fs)(1)
TDM 1/(128 * Fs)(1)
Voice/Bluetooth pulse code modulation (PCM) interface PCM (master mode) 1/(65 * Fs)(2)
PCM (slave mode) 1/(33 to 65 * Fs)(2)
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only (TDM/I2S interface)
(2) Fs = 8 or 16 kHz (voice/Bluetooth PCM interface)

4.7.3 I2C Timing

The TPS65920/TPS65930 device provides two I2C HS slave interfaces (one for general-purpose and one for SmartReflex). These interfaces support standard mode (100 Kbps), fast mode (400 Kbps), and HS mode (3.4 Mbps). The general-purpose I2C module embeds four slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and ID4 = 4Bh). The SmartReflex I2C module uses one slave hard-coded address (ID5). The master mode is not supported.

Table 4-5 and Table 4-6 assume testing over the recommended operating conditions (see Figure 4-1).

swcs037-033.gifFigure 4-1 I2C Interface—Transmit and Receive in Slave Mode

Table 4-5 I2C Interface—Timing Requirements(1)(2)

NOTATION PARAMETER MIN MAX UNIT
Slave HS Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 10 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 70 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 160 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 160 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 160 ns
Slave Fast-Speed Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 100 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 0.9 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 0.6 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 0.6 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 0.6 ns
Slave Standard Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 250 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 4.7 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 4 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 4 ns
(1) The input timing requirements are given by considering a rising or falling time of:
80 ns in HS mode (3.4 Mbps)
300 ns in fast-speed mode (400 Kbps)
1000 ns in standard mode (100 Kbps)
(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA.
SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL.

Table 4-6 lists the switching requirements of the I2C interface.

Table 4-6 I2C Interface—Switching Requirements(1)(2)

NOTATION PARAMETER MIN MAX UNIT
Slave HS Mode
I1 tw(SCLL) Pulse duration, SCL low 160 ns
I2 tw(SCLH) Pulse duration, SCL high 60 ns
Slave Fast-Speed Mode
I1 tw(SCLL) Pulse duration, SCL low 1.3(3) µs
I2 tw(SCLH) Pulse duration, SCL high 0.6 µs
Slave Standard Mode
I1 tw(SCLL) Pulse duration, SCL low 4.7 µs
I2 tw(SCLH) Pulse duration, SCL high 4 µs
(1) The capacitive load is:
100 pF in HS mode (3.4 Mbps)
400 pF in fast-speed mode (400 Kbps)
400 pF in standard mode (100 Kbps)
(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA
SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL
(3) SCL low timing for slave fast-speed mode is compatible with 0.79 µs.

4.7.4 Audio Interface: TDM/I2S Protocol

The TPS65920/TPS65930 device acts as a master for the TDM and I2S interfaces or as a slave for only the I2S interface. If the TPS65920/TPS65930 device is the master, it must provide the frame synchronization (TDM/I2S_SYNC) and bit clock (TDM/I2S_CLK) to the host processor. If it is the slave, the TPS65920/TPS65930 device receives frame synchronization and the bit clock.

The TPS65920/TPS65930 device supports the I2S, TDM, left-justified, and right-justified data formats, but does not support TDM slave mode.

4.7.4.1 I2S Right- and Left-Justified Data Format

Table 4-7 and Table 4-8 assume testing over the recommended operating conditions (see Figure 4-2 and Figure 4-3).

swcs037-031.gifFigure 4-2 I2S Interface—I2S Master ModeI
swcs037-032.gifFigure 4-3 I2S Interface—I2S Slave Mode

The timing requirements listed in Table 4-7 are valid on the following conditions of input slew and output load:

  • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns
  • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF

The input timing requirements in Table 4-7 are given by considering a rising or falling time of 6.5 ns.

Table 4-7 I2S Interface—Timing Requirements

NOTATION PARAMETER MIN MAX UNIT
Master Mode
I3 tsu(DIN-CLKH) Setup time, I2S.DIN valid to I2S.CLK high2 25 ns
I4 th(DIN-CLKH) Hold time, I2S.DIN valid from I2S.CLK high. 0 ns
Slave Mode
I0 tc(CLK) Cycle time, I2S.CLK(1) 1/64 * Fs ns
I1 tw(CLK) Pulse duration, I2S.CLK high or low(2) 0.45 * P 0.55 * P ns
I3 tsu(DIN-CLKH) Setup time, I2S.DIN valid to I2S.CLK high 5 ns
I4 th(DIN-CLKH) Hold time, I2S.DIN valid from I2S.CLK high. 5 ns
I6 tsu(SYNC-CLKH) Setup time, I2S.SYNC valid to I2S.CLK high 5 ns
I7 th(SYNC-CLKH) Hold time, I2S.SYNC valid from I2S.CLK high 5 ns
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only
(2) P = I2S.CLK period

The capacitive load for Table 4-8 is 7 pF. Table 4-8 lists the switching characteristics for the I2S interface.

Table 4-8 I2S Interface—Switching Characteristics

NOTATION PARAMETER MIN MAX UNIT
Master Mode
I0 tc(CLK) Cycle time, I2S.CLK(1) 1/64 * Fs ns
I1 tw(CLK) Pulse duration, I2S.CLK high or low(2) 0.45 * P 0.55 * P ns
I2 td(CLKL-SYNC) Delay time, I2S.CLK falling edge to I2S.SYNC transition –10 10 ns
I5 td(CLKL-DOUT) Delay time, I2S.CLK falling edge to I2S.DOUT transition –10 10 ns
Slave Mode
I5 td(CLKL-DOUT) Delay time, I2S.CLK falling edge to I2S.DOUT transition 0 20 ns
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only
(2) P = I2S.CLK period

4.7.4.2 TDM Data Format

Table 4-9 and Table 4-10 assume testing over the recommended operating conditions (see Figure 4-4).

swcs037-030.gifFigure 4-4 TDM Interface—TDM Master Mode

The timing requirements listed in Table 4-9 are valid on the following conditions of input slew and output load:

  • Rise and fall time range of inputs (SYNC, DIN) is tR/tF = 1.0 ns/6.5 ns
  • Capacitance load range of outputs (CLK, SYNC, DOUT) is CLoad = 1 pF/30 pF

Table 4-9 TDM Interface Master Mode—Timing Requirements

NOTATION PARAMETER MIN MAX UNIT
T3 tsu(DIN-CLKH) Setup time, TDM.DIN valid to TDM.CLK high 25 ns
T4 th(DIN-CLKH) Hold time, TDM.DIN valid from TDM.CLK high 0 ns

Table 4-10 lists the switching characteristics of the TDM interface master mode.

Table 4-10 TDM Interface Master Mode—Switching Characteristics

NOTATION PARAMETER MIN MAX UNIT
T0 tc(CLK) Cycle time, TDM.CLK (1) 1/64 * Fs ns
T1 tw(CLK) Pulse duration, TDM.CLK high or low(2) 0.45*P 0.55*P ns
T2 td(CLKL-SYNC) Delay time, TDM.CLK rising edge to TDM.SYNC transition –10 10 ns
T5 td(CLKL-DOUT) Delay time, TDM.CLK rising edge to TDM.DOUT transition –10 12 ns
(1) Fs = 8 to 48 kHz; 96 kHz for RX path only
(2) P = TDM.CLK period

4.7.5 JTAG Interfaces

The TPS65920/TPS65930 device JTAG TAP controller handles standard IEEE JTAG interfaces. This section describes the timing requirements for the tools used to test TPS65920/TPS65930 device power management.

The JTAG/TAP module provides a JTAG interface according to IEEE Std1149.1a. This interface uses the four I/O pins TMS, TCK, TDI, and TDO. The TMS, TCK, and TDI inputs contain a pullup device, which makes their state high when they are not driven. The output TDO is a 3-state output, which is high impedance except when data are shifted between TDI and TDO.

  • TCK is the test clock signal.
  • TMS is the test mode select signal.
  • TDI is the scan path input.
  • TDO is the scan path output.

TMS and TDO are multiplexed at the top level with the GPIO0 and GPIO1 pins. The dedicated external TEST pin switches from functional mode (GPIO0/GPIO1) to JTAG mode (TMS/TDO). The JTAG operations are controlled by a state-machine that follows the IEEE Std1149.1a state diagram. This state-machine is reset by the TPS65920/TPS65930 internal power-on reset (POR). A test mode is selected by writing a 6-bit word (instruction) into the instruction register and then accessing the related data register.

Table 4-11 and Table 4-12 assume testing over the recommended operating conditions (see Figure 4-5).

jtag_inter_time_wcs019.gifFigure 4-5 JTAG Interface Timing

The input timing requirements are given by considering a rising or falling edge of 7 ns.

Table 4-11 JTAG Interface—Timing Requirements

NOTATION PARAMETER MIN MAX UNIT
Clock
JL1 tc(TCK) Cycle time, JTAG.TCK period 30 ns
JL2 tw(TCK) Pulse duration, JTAG.TCK high or low(1) 0.48*P 0.52*P ns
Read Timing
JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns
JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns
JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns
JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns
(1) P = JTAG.TCK clock period

The capacitive load is 35 pF.

Table 4-12 JTAG Interface—Switching Characteristics

NOTATION PARAMETER MIN MAX UNIT
Write Timing
JL7 td(TCK-TDOV)) Delay time, JTAG, TCK active edge to JTAG.TDO valid 0 14 ns