SLVS537C June   2004  – May 2025

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics: UA78M33Q (Both Legacy and New Chip)
    6. 5.6 Electrical Characteristics: UA78M05Q (Both Legacy and New Chip)
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagrams
    3. 6.3 Feature Description
      1. 6.3.1 Current Limit
      2. 6.3.2 Dropout Voltage (VDO)
      3. 6.3.3 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation
      2. 6.4.2 Dropout Operation
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input and Output Capacitor Requirements
        2. 7.2.2.2 Power Dissipation (PD)
        3. 7.2.2.3 Estimating Junction Temperature
        4. 7.2.2.4 External Capacitor Requirements
        5. 7.2.2.5 Overload Recovery
        6. 7.2.2.6 Reverse Current
        7. 7.2.2.7 Polarity Reversal Protection
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Evaluation Module
      2. 8.1.2 Device Nomenclature
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Dissipation (PD)

Circuit reliability requires consideration of the device power dissipation, location of the circuit on the PCB, and correct sizing of the thermal plane. Make sure the printed circuit board (PCB) area around the regulator has few or no other heat-generating devices that cause added thermal stress.

To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. The following equation calculates power dissipation (PD).

Equation 1. PD = (VI – VO) × IO
Note: Power dissipation is minimized, and therefore greater efficiency be achieved, by correct selection of the system voltage rails. For the lowest power dissipation, use the minimum input voltage required for correct output regulation.

For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area contains an array of plated vias that conduct heat to additional copper planes for increased heat dissipation.

The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device. Power dissipation and junction temperature are most often related by the RθJA of the combined PCB and device package and the TA. RθJA is the junction-to-ambient thermal resistance and TA is the temperature of the ambient air. The following equation describes this relationship.

Equation 2. TJ = TA + (RθJA × PD)

Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC standard PCB and copper-spreading area. RθJA is used as a relative measure of package thermal performance. RθJA is improved by 35% to 55% compared to the Thermal Information table value with the PCB board layout optimization. See the An empirical analysis of the impact of board layout on LDO thermal performance application note.