JAJSFO3D June   2018  – June 2021

PRODUCTION DATA

1. 特長
2. アプリケーション
3. 概要
4. Revision History
5. Pin Configuration and Functions
6. Specifications
7. Detailed Description
1. 7.1 Overview
2. 7.2 Functional Block Diagram
3. 7.3 Feature Description
4. 7.4 Device Functional Modes
8. Application and Implementation
1. 8.1 Application Information
2. 8.2 Typical Application
3. 8.3 What to Do and What Not to Do
9. Power Supply Recommendations
10. 10Layout
11. 11Device and Documentation Support
12. 12Mechanical, Packaging, and Orderable Information

• DWV|8

## 6.8 Safety Limiting Values

Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to over-heat the die and damage the isolation barrier potentially leading to secondary system failures.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS Safety input, output, or supply current RθJA = 85.4°C/W, VDDx = 5.5 V,
TJ = 150°C, TA = 25°C
266 mA
IS Safety input, output, or supply current RθJA = 85.4°C/W, VDDx = 3.6 V,
TJ = 150°C, TA = 25°C
407 mA
PS Safety input, output, or total power RθJA = 85.4°C/W, TJ = 150°C, TA = 25°C 1464 mW
TS Maximum safety temperature 150 °C
The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These
limits vary with the ambient temperature, TA.
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for
leaded surface-mount packages. Use these equations to calculate the value for each parameter:
TJ = TA + RθJA × P, where P is the power dissipated in the device.
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.