SLAS808E February   2012  – September 2015 DAC34SH84

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - Digital Specifications
    7. 6.7  Electrical Characteristics - AC Specifications
    8. 6.8  Timing Requirements - Digital Specifications
    9. 6.9  Switching Characteristics - AC Specifications
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Serial Interface
      2. 7.3.2  Data Interface
      3. 7.3.3  Data Format
      4. 7.3.4  Input FIFO
      5. 7.3.5  FIFO Modes of Operation
        1. 7.3.5.1 Dual-Sync-Sources Mode
        2. 7.3.5.2 Single-Sync-Source Mode
        3. 7.3.5.3 Bypass Mode
      6. 7.3.6  Clocking Modes
        1. 7.3.6.1 PLL Bypass Mode
        2. 7.3.6.2 PLL Mode
      7. 7.3.7  FIR Filters
      8. 7.3.8  Complex Signal Mixer
        1. 7.3.8.1 Full Complex Mixer
        2. 7.3.8.2 Coarse Complex Mixer
        3. 7.3.8.3 Mixer Gain
        4. 7.3.8.4 Real Channel Upconversion
      9. 7.3.9  Quadrature Modulation Correction (QMC)
        1. 7.3.9.1 Gain and Phase Correction
        2. 7.3.9.2 Offset Correction
      10. 7.3.10 Temperature Sensor
      11. 7.3.11 Data Pattern Checker
      12. 7.3.12 Parity Check Test
        1. 7.3.12.1 32-Bit Parity
        2. 7.3.12.2 Dual 16-Bit Parity
      13. 7.3.13 DAC34SH84 Alarm Monitoring
      14. 7.3.14 LVPECL Inputs
      15. 7.3.15 LVDS Inputs
      16. 7.3.16 CMOS Digital Inputs
      17. 7.3.17 Reference Operation
      18. 7.3.18 DAC Transfer Function
      19. 7.3.19 Analog Current Outputs
    4. 7.4 Device Functional Modes
      1. 7.4.1 Multi-Device Synchronization
        1. 7.4.1.1 Multi-Device Synchronization: PLL Bypassed with Dual Sync Sources Mode
        2. 7.4.1.2 Multi-Device Synchronization: PLL Enabled with Dual Sync Sources Mode
        3. 7.4.1.3 Multi-Device Operation: Single Sync Source Mode
    5. 7.5 Programming
      1. 7.5.1 Power-Up Sequence
      2. 7.5.2 Example Start-Up Routine
        1. 7.5.2.1 Device Configuration
        2. 7.5.2.2 PLL Configuration
        3. 7.5.2.3 NCO Configuration
        4. 7.5.2.4 Example Start-Up Sequence
    6. 7.6 Register Map
      1. 7.6.1 Register Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 IF Based LTE Transmitter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Data Input Rate
          2. 8.2.1.2.2 Interpolation
          3. 8.2.1.2.3 LO Feedthrough and Sideband Correction
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Direct Upconversion (Zero IF) LTE Transmitter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Data Input Rate
          2. 8.2.2.2.2 Interpolation
          3. 8.2.2.2.3 LO Feedthrough and Sideband Correction
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Assembly
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1 Definition of Specifications
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage range(2) DACVDD, DIGVDD, CLKVDD –0.5 1.5 V
VFUSE –0.5 1.5 V
IOVDD, IOVDD2 –0.5 4 V
AVDD, PLLAVDD –0.5 4 V
Pin voltage range(2) DAB[15..0]P/N, DCD[15..0]P/N, DATACLKP/N, ISTRP/N, PARITYCDP/N, SYNCP/N –0.5 IOVDD + 0.5 V
DACCLKP/N, OSTRP/N –0.5 CLKVDD + 0.5 V
ALARM, SDO, SDIO, SCLK, SDENB, SLEEP, RESETB, TESTMODE, TXENA –0.5 IOVDD2 + 0.5 V
IOUTAP/N, IOUTBP/N, IOUTCP/N, IOUTDP/N –1.0 AVDD + 0.5 V
EXTIO, BIASJ –0.5 AVDD + 0.5 V
LPF –0.5 PLLAVDD + 0.5 V
Peak input current (any input) 20 mA
Peak total input current (all inputs) –30 mA
Absolute maximum junction temperature, TJ 150 °C
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Measured with respect to GND

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
TJ Recommended operating junction temperature 105 °C
Maximum rated operating junction temperature(1) 125
TA Recommended free-air temperature –40 25 85 °C
(1) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

6.4 Thermal Information

THERMAL METRIC(1) DAC34SH84 UNIT
ZAY (NFBGA)
196 PINS
RθJA Junction-to-ambient thermal resistance 37.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 6.8 °C/W
RθJB Junction-to-board thermal resistance 16.8 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 16.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance NA °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics – DC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20 mA (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 16 Bits
DC ACCURACY
DNL Differential nonlinearity 1 LSB = IOUTFS / 216 ±2 LSB
INL Integral nonlinearity ±4 LSB
ANALOG OUTPUT
Coarse gain linearity ±0.04 LSB
Offset error Mid-code offset ±0.001 %FSR
Gain error With external reference ±2 %FSR
With internal reference ±2 %FSR
Gain mismatch With internal reference ±2 %FSR
Full-scale output current 10 20 30 mA
Output compliance range –0.5 0.6 V
Output resistance 300
Output capacitance 5 pF
REFERENCE OUTPUT
VREF Reference output voltage 1.2 V
Reference output current(2) 100 nA
REFERENCE INPUT
VEXTIO Input voltage range External reference mode 0.6 1.2 1.25 V
Input resistance 1
Small-signal bandwidth 472 kHz
Input capacitance 100 pF
TEMPERATURE COEFFICIENTS
Offset drift ±1 ppm / °C
Gain drift With external reference ±15 ppm / °C
With internal reference ±30 ppm / °C
Reference voltage drift ±8 ppm / °C
POWER SUPPLY(3)
AVDD, IOVDD, PLLAVDD 3.14 3.3 3.46 V
DIGVDD 1.25 1.3 1.35 V
CLKVDD, DACVDD 1.3 1.35 1.4 V
IOVDD2 1.71 3.3 3.45 V
PSRR Power-supply rejection ratio DC tested ±0.25 %FSR / V
POWER CONSUMPTION
I(AVDD) Analog supply current(4) Mode 1
fDAC = 1.5 GSPS, 2× interpolation,
mixer on, QMC on, invsinc on,
PLL enabled, 20-mA FS output, IF = 200 MHz
135 165 mA
I(DIGVDD) Digital supply current 885 950 mA
I(DACVDD) DAC supply current 45 60 mA
I(CLKVDD) Clock supply current 127 145 mA
P Power dissipation 1828 2056 mW
I(AVDD) Analog supply current(4) Mode 2
fDAC = 1.47456 GSPS, 2× interpolation,
mixer on, QMC on, invsinc on,
PLL disabled, 20-mA FS output, IF = 7.3 MHz
115 mA
I(DIGVDD) Digital supply current 770 mA
I(DACVDD) DAC supply current 40 mA
I(CLKVDD) Clock supply current 95 mA
P Power dissipation 1562 mW
I(AVDD) Analog supply current(4) Mode 3
fDAC = 737.28 MSPS, 2x interpolation,
mixer on, QMC on, invsinc off,
PLL disabled, 20-mA FS output, IF = 7.3 MHz
115 mA
I(DIGVDD) Digital supply current 470 mA
I(DACVDD) DAC supply current 21 mA
I(CLKVDD) Clock supply current 55 mA
P Power dissipation 1093 mW
I(AVDD) Analog supply current(4) Mode 4
fDAC = 1.47456 GSPS, 2× interpolation,
mixer on, QMC on, invsinc on,
PLL enabled, IF = 7.3 MHz, channels A/B/C/D output sleep
40 mA
I(DIGVDD) Digital supply current 710 mA
I(DACVDD) DAC supply current 50 mA
I(CLKVDD) Clock supply current 90 mA
P Power dissipation 1160 mW
I(AVDD) Analog supply current(4) Mode 5
Power-down mode: no clock, DAC on sleep mode (clock receiver sleep),
channels A/B/C/D output sleep, static data pattern
28 mA
I(DIGVDD) Digital supply current 17 mA
I(DACVDD) DAC supply current 0 mA
I(CLKVDD) Clock supply current 20 mA
P Power dissipation 142 mW
I(AVDD) Analog supply current(4) Mode 6
fDAC = 1 GSPS, 2x interpolation,
mixer off, QMC off, invsinc off,
PLL enabled, 20-mA FS output, IF = 7.3 MHz
130 mA
I(DIGVDD) Digital supply current 570 mA
I(DACVDD) DAC supply current 25 mA
I(CLKVDD) Clock supply current 98 mA
P Power dissipation 1336 mA
I(AVDD) Analog supply current(4) Mode 7
fDAC = 1 GSPS, 2x interpolation,
mixer off,QMC off, invsinc off,
PLL disabled, 20-mA FS output, IF = 7.3 MHz
115 mA
I(DIGVDD) Digital supply current 335 mA
I(DACVDD) DAC supply current 23 mA
I(CLKVDD) Clock supply current 70 mA
P Power dissipation 940 mW
I(AVDD) Analog supply current(4) Mode 8
fDAC = 1.47456 GSPS, 2× interpolation,
mixer on, QMC on, invsinc on,
PLL disabled, IF = 7.3 MHz, channels A/B/C/D output sleep
45 mA
I(DIGVDD) Digital supply current 655 mA
I(DACVDD) DAC supply current 30 mA
I(CLKVDD) Clock supply current 95 mA
P Power dissipation 1169 mW
(1) Measured differentially across IOUTP/N with 25 Ω each to GND.
(2) Use an external buffer amplifier with high-impedance input to drive any external load.
(3) To ensure power supply accuracy and to account for power supply filter network loss at operating conditions, the use of the ATEST function in register config27 to check the internal power supply nodes is recommended.
(4) Includes AVDD, PLLAVDD, and IOVDD

6.6 Electrical Characteristics – Digital Specifications

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LVDS INPUTS: DAB[15:0]P/N, DCD[15:0]P/N, DATACLKP/N, ISTRP/N, SYNCP/N, PARITYCDP/N(1)
VA,B+ Logic-high differential input voltage threshold 200 mV
VA,B– Logic-low differential input voltage threshold –200 mV
VCOM Input common mode 1 1.2 1.6 V
ZT Internal termination 85 110 135 Ω
CL LVDS input capacitance 2 pF
fINTERL Interleaved LVDS data transfer rate 1500 MSPS
fDATA Input data rate 750 MSPS
CLOCK INPUT (DACCLKP/N)
Differential voltage(2) |DACCLKP - DACCLKN| 0.4 1 V
Internally biased common-mode voltage 0.2 V
Single-ended swing level –0.4 V
OUTPUT STROBE (OSTRP/N)
Differential voltage |OSTRP-OSTRN| 0.4 1.0 V
Internally biased common-mode voltage 0.2 V
Single-ended swing level –0.4 V
CMOS INTERFACE: ALARM, SDO, SDIO, SCLK, SDENB, SLEEP, RESETB, TXENA
VIH High-level input voltage 0.7 × IOVDD2 V
VIL Low-level input voltage 0.3 × IOVDD2 V
IIH High-level input current –40 40 µA
IIL Low-level input current –40 40 µA
CI CMOS input capacitance 2 pF
VOH ALARM, SDO, SDIO Iload = –100 μA IOVDD2 – 0.2 V
Iload = –2 mA 0.8 × IOVDD2 V
VOL ALARM, SDO, SDIO Iload = 100 μA 0.2 V
Iload = 2 mA 0.5 V
PHASE-LOCKED LOOP
PLL/VCO operating frequency PLL_vco = 011110 (30) 2940 2957 MHz
PLL_vco = 100010 (34) 2957 3000
PLL_vco = 100110 (38) 3000 3043
PLL_vco = 101010 (42) 3034 3086
PLL_vco = 101110 (46) 3069 3120
PLL_vco = 110010 (50) 3103 3163
PLL_vco = 110110 (54) 3128 3215
PLL_vco = 111010 (58) 3170 3257
PLL_vco = 111111 (63) 3215 3300
(1) See LVDS Inputs section for terminology.
(2) Driving the clock input with a differential voltage lower than 1 V may result in degraded performance.

6.7 Electrical Characteristics – AC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE(1)
SFDR Spurious-free dynamic range,
(0 to fDAC / 2) tone at 0 dBFS
fDAC = 1.5 GSPS, fOUT = 20 MHz 78 dBc
fDAC = 1.5 GSPS, fOUT = 50 MHz 74
fDAC = 1.5 GSPS, fOUT = 70 MHz 71
IMD3 Third-order two-tone intermodulation distortion,
each tone at –12 dBFS
fDAC = 1.5 GSPS, fOUT = 30 ± 0.5 MHz 87 dBc
fDAC = 1.5 GSPS, fOUT = 50 ± 0.5 MHz 85
fDAC = 1.5 GSPS, fOUT = 100 ± 0.5 MHz 78
NSD Noise spectral density,(2)
tone at 0 dBFS
fDAC = 1.5 GSPS, fOUT = 10 MHz 160 dBc / Hz
fDAC = 1.5 GSPS, fOUT = 80 MHz 158
ACLR(2) Adjacent-channel leakage ratio, single carrier fDAC = 1.47456 GSPS, fOUT = 30 MHz 76 dBc
fDAC = 1.47456 GSPS, fOUT = 153 MHz 75
Alternate-channel leakage ratio, single carrier fDAC = 1.47456 GSPS, fOUT = 30 MHz 86
fDAC = 1.47456 GSPS, fOUT = 153 MHz 82
Channel isolation fDAC = 1.5 GSPS, fOUT = 40 MHz 101 dBc
(1) 4:1 transformer output termination, 50-Ω doubly terminated load
(2) Single carrier, W-CDMA with 3.84-MHz BW, 5-MHz spacing, centered at IF, PAR = 12 dB. TESTMODEL 1, 10 ms

6.8 Timing Requirements – Digital Specifications

MIN NOM MAX UNIT
CLOCK INPUT (DACCLKP/N)
Duty cycle 40% 60%
DACCLKP/N input frequency 1500 MHz
OUTPUT STROBE (OSTRP/N)
fOSTR Frequency fOSTR = fDACCLK / (n x 8 x Interp) where n is any positive integer, fDACCLK is DACCLK frequency in MHz fDACCLK /
(8 x interp)
MHz
Duty cycle 50%
DIGITAL INPUT TIMING SPECIFICATIONS
Timing LVDS inputs: DAB[15:0]P/N, DCD[15:0]P/N, ISTRP/N, SYNCP/N, PARITYCDP/N, double edge latching
ts(DATA) Setup time, DAB[15:0]P/N, DCD[15:0]P/N, ISTRP/N, SYNCP/N and PARITYP/N, valid to either edge of DATACLKP/N ISTRP/N and SYNCP/N reset latched only on rising edge of DATACLKP/N Config36 Setting
datadly clkdly
0 0 30 ps
0 1 –10
0 2 –50
0 3 –90
0 4 –130
0 5 –170
0 6 –210
0 7 –250
1 0 50
2 0 90
3 0 130
4 0 170
5 0 210
6 0 250
7 0 290
th(DATA) Hold time, DAB[15:0]P/N, DCD[15:0]P/N, ISTRP/N, SYNCP/N and PARITYP/N, valid after either edge of DATACLKP/N ISTRP/N and SYNCP/N reset latched only on rising edge of DATACLKP/N Config36 Setting ps
datadly clkdly
0 0 200
0 1 240
0 2 280
0 3 320
0 4 360
0 5 400
0 6 440
0 7 480
1 0 190
2 0 150
3 0 110
4 0 70
5 0 30
6 0 –10
7 0 –50
t(ISTR_SYNC) ISTRP/N and SYNCP/N pulse width fDATACLK is DATACLK frequency in MHz 1/2fDATACLK ns
TIMING OUTPUT STROBE INPUT: DACCLKP/N rising edge LATCHING(1)
ts(OSTR) Setup time, OSTRP/N valid to rising edge of DACCLKP/N –80 ps
th(OSTR) Hold time, OSTRP/N valid after rising edge of DACCLKP/N 220 ps
TIMING SYNC INPUT: DACCLKP/N rising edge LATCHING(2)
ts(SYNC_PLL) Setup time, SYNCP/N valid to rising edge of DACCLKP/N 150 ps
th(SYNC_PLL) Hold time, SYNCP/N valid after rising edge of DACCLKP/N 250 ps
TIMING SERIAL PORT
ts(SDENB) Setup time, SDENB to rising edge of SCLK 20 ns
ts(SDIO) Setup time, SDIO valid to rising edge of SCLK 10 ns
th(SDIO) Hold time, SDIO valid to rising edge of SCLK 5 ns
t(SCLK) Period of SCLK Register config6 read (temperature sensor read) 1 µs
All other registers 100 ns
td(Data) Data output delay after falling edge of SCLK 10 ns
tRESET Minimum RESETB pulse width 25 ns
(1) OSTR is required in Dual Sync Sources mode. In order to minimize the skew it is recommended to use the same clock distribution device such as Texas Instruments CDCE62005 to provide the DACCLK and OSTR signals to all the DAC34H84 devices in the system. Swap the polarity of the DACCLK outputs with respect to the OSTR ones to establish proper phase relationship.
(2) SYNC is required to synchronize the PLL circuit in multiple devices. The SYNC signal must meet the timing relationship with respect to the reference clock (DACCLKP/N) of the on-chip PLL circuit.

6.9 Switching Characteristics – AC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG OUTPUT(1)
ts(DAC) Output settling time to 0.1% Transition: Code 0x0000 to 0xFFFF 10 ns
tpd Output propagation delay DAC outputs are updated on the falling edge of DAC clock. Does not include Digital Latency (see below). 2 ns
tr(IOUT) Output rise time 10% to 90% 220 ps
tf(IOUT) Output fall time 90% to 10% 220 ps
Digital latency No interpolation, FIFO on, Mixer off, QMC off, Inverse sinc off 128 DAC clock cycles
2x Interpolation 216
4x Interpolation 376
8x Interpolation 726
16x Interpolation 1427
Fine mixer 24
QMC 16
Inverse sinc 20
Power-up
Time
DAC wake-up time IOUT current settling to 1% of IOUTFS from output sleep 2 µs
DAC sleep time IOUT current settling to less than 1% of IOUTFS in output sleep 2
(1) Measured single ended into 50-Ω load.

6.10 Typical Characteristics

All plots are at 25°C, nominal supply voltage, fDAC = 1500 MSPS, 2× interpolation, NCO enabled, mixer gain disabled, QMC enabled with gain set at 1446 for both I/Q channels, 0-dBFS digital input, 20-mA full-scale output current with 4:1 transformer (unless otherwise noted)
DAC34SH84 G001_LAS751.png Figure 1. Integral Nonlinearity
DAC34SH84 G003_LAS808_SFDR_Input smooth Callout.png Figure 3. SFDR vs Output Frequency Over Input Scale
DAC34SH84 G005_LAS808 HD3 Input smooth Callout.png Figure 5. Third Harmonic Distortion vs Output Frequency Over Input Scale
DAC34SH84 G007_LAS808_SFDR Fdac smooth Callout.png Figure 7. SFDR vs Output Frequency Over fDAC
DAC34SH84 G009_LAS808_Spectral IF20M smooth Callout.png Figure 9. Single-Tone Spectral Plot
DAC34SH84 G011_LAS808_Spectral IF150M smooth Callout.png Figure 11. Single-Tone Spectral Plot
DAC34SH84 G013_LAS808 Spectral IF200M PLLon smooth Callout.png Figure 13. Single-Tone Spectral Plot
DAC34SH84 G015_LAS808_IMD3 Input smooth Callout.png Figure 15. IMD3 vs Output Frequency Over Input Scale
DAC34SH84 G017_LAS808_IMD3 Fdac smooth Callout.png Figure 17. IMD3 vs Output Frequency Over fDAC
DAC34SH84 G019_LAS808_Spectral Two-tone IF70M.png Figure 19. Two-Tone Spectral Plot
DAC34SH84 G021_LAS808 IMD3 PLL smooth Callout.png Figure 21. IMD3 vs Output Frequency Over Clocking Options
DAC34SH84 G023_LAS808_NSD Interp smooth Callout.png Figure 23. NSD vs Output Frequency Over Interpolation
DAC34SH84 G025_LAS808 NSD Iout smooth Callout.png Figure 25. NSD vs Output Frequency Over IOUTFS
DAC34SH84 G027_LAS808 ACLR Adj PLL smooth Callout.png Figure 27. Single-Carrier WCDMA ACLR (Adjacent) vs Output Frequency Over Clocking Options
DAC34SH84 G029_SLAS808.gif Figure 29. Single-Carrier WCDMA Test Mode1
DAC34SH84 G031_SLAS808.gif
Figure 31. Single-Carrier WCDMA Test Mode1
DAC34SH84 G033_SLAS808.gif Figure 33. Four-Carrier WCDMA Test Mode1
DAC34SH84 G035_SLAS808.gif Figure 35. 10-MHz Single-Carrier LTE Test Mode3.1
DAC34SH84 G037_SLAS808.gif Figure 37. 20-MHz Single-Carrier LTE Test Mode3.1
DAC34SH84 G039_LAS808 Power_NCOoff.png Figure 39. Power vs fDAC Over Interpolation
DAC34SH84 G041_LAS808 QMC_NCO_Power.png Figure 41. Power Consumption vs fDAC Over Digital Processing Functions
DAC34SH84 G043_LAS808 DigCurrent_NCOoff.png Figure 43. DIGVDD Current vs fDAC Over Interpolation
DAC34SH84 G045_LAS808_DAC_Current.png Figure 45. DACVDD Current vs fDAC Over Interpolation
DAC34SH84 G047_LAS808_Analog_Current.png Figure 47. AVDD Current vs fDAC
DAC34SH84 G002_LAS751.png Figure 2. Differential Nonlinearity
DAC34SH84 G004_LAS808_HD2 Input smooth Callout.png Figure 4. Second-Harmonic Distortion vs Output Frequency Over Input Scale
DAC34SH84 G006_LAS808 SFDR Interp smooth Callout.png Figure 6. SFDR vs Output Frequency Over Interpolation
DAC34SH84 G008_LAS808 SFDR Iout smooth Callout.png Figure 8. SFDR vs Output Frequency Over IOUTFS
DAC34SH84 G010_LAS808_Spectral IF70M smooth Callout.png Figure 10. Single-Tone Spectral Plot
DAC34SH84 G012_LAS808_Spectral IF200M smooth Callout.png Figure 12. Single-Tone Spectral Plot
DAC34SH84 G014_LAS808 SFDR PLL smooth Callout.png Figure 14. SFDR vs Output Frequency Over Clocking Options
DAC34SH84 G016_LAS808_IMD3 Interp smooth Callout.png Figure 16. IMD3 vs Output Frequency Over Interpolation
DAC34SH84 G018_LAS808 IMD3 Iout smooth Callout.png Figure 18. IMD3 vs Output Frequency Over IOUTFS
DAC34SH84 G020_LAS808_Spectral Two-tone IF200M.png Figure 20. Two-Tone Spectral Plot
DAC34SH84 G022_LAS808_NSD Input smooth Callout.png Figure 22. NSD vs Output Frequency Over Input Scale
DAC34SH84 G024_LAS808_NSD Fdac smooth Callout.png Figure 24. NSD vs Output Frequency Over fDAC
DAC34SH84 G026_LAS808 NSD PLL smooth Callout.png Figure 26. NSD vs Output Frequency Over Clocking Options
DAC34SH84 G028_LAS808 ACLR Alt PLL smooth Callout.png Figure 28. Single-Carrier WCDMA ACLR (Alternate) vs Output Frequency Over Clocking Options
DAC34SH84 G030_SLAS808.gif Figure 30. Single-Carrier WCDMA Test Mode1
DAC34SH84 G032_SLAS808.gif Figure 32. Four-Carrier WCDMA Test Mode1
DAC34SH84 G034_SLAS808.gif Figure 34. Four-Carrier WCDMA Test Mode1
DAC34SH84 G036_SLAS808.gif Figure 36. 10-MHz Single-Carrier LTE Test Mode3.1
DAC34SH84 G038_SLAS808.gif Figure 38. 20-MHz Single-Carrier LTE Test Mode3.1
DAC34SH84 G040_LAS808 Power_NCOon.png Figure 40. Power vs fDAC Over Interpolation
DAC34SH84 G042_LAS808 QMC_NCO_Current.png Figure 42. DIGVDD Current vs fDAC Over Digital Processing Functions
DAC34SH84 G044_LAS808 DigCurrent_NCOon.png Figure 44. DIGVDD Current vs fDAC Over Interpolation
DAC34SH84 G046_LAS808_CLK_Current.png Figure 46. CLKVDD Current vs fDAC
DAC34SH84 G048_LAS808 Channel_Isolation.png Figure 48. Channel Isolation vs IF